Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 66(4): 517-532.e9, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525743

RESUMEN

Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/metabolismo , Lisosomas/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Lisosomas/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Agregado de Proteínas , Unión Proteica , Proteolisis , Interferencia de ARN , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Transfección
2.
Int J Mol Sci ; 20(9)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060328

RESUMEN

The small GTase Arf6 has several important functions in intracellular vesicular trafficking and regulates the recycling of different types of cargo internalized via clathrin-dependent or -independent endocytosis. It activates the lipid modifying enzymes PIP 5-kinase and phospholipase D, promotes actin polymerization, and affects several functionally distinct processes in the cell. Arf6 is used for the phagocytosis of pathogens and can be directly or indirectly targeted by various pathogens to block phagocytosis or induce the uptake of intracellular pathogens. Arf6 is also used in the signaling of Toll-like receptors and in the activation of NADPH oxidases. In this review, we first give an overview of the different roles and mechanisms of action of Arf6 and then focus on its role in innate immunity and host-pathogen interactions.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Factor 6 de Ribosilación del ADP , Animales , Biomarcadores , Activación Enzimática , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Fagocitosis/genética , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Virulencia
3.
J Biol Chem ; 289(3): 1364-76, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297182

RESUMEN

Recognition of lipopolysaccharides (LPS) by Toll-like receptor 4 (TLR4) at the plasma membrane triggers NF-κB activation through recruitment of the adaptor proteins Mal and MyD88. Endocytosis of the activated TLR4 allows recruitment of the adaptors Tram and Trif, leading to activation of the transcription factor IRF3 and interferon production. The small GTPase ADP-ribosylation factor 6 (Arf6) was shown to regulate the plasma membrane association of Mal. Here we demonstrate that inhibition of Arf6 also markedly reduced LPS-induced cytokine production in Mal(-/-) mouse macrophages. In this article, we focus on a novel role for Arf6 in the MyD88-independent TLR4 pathway. MyD88-independent IRF3 activation and IRF3-dependent gene transcription were strictly dependent on Arf6. Arf6 was involved in transport of Tram to the endocytic recycling compartment and internalization of LPS, possibly explaining its requirement for LPS-induced IRF3 activation. Together, these results show a critical role for Arf6 in regulating Tram/Trif-dependent TLR4 signaling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Animales , Línea Celular , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Ratones , Ratones Noqueados , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
4.
J Biol Chem ; 288(17): 12054-66, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23460645

RESUMEN

Upon activation, Toll-like receptor 4 (TLR4) binds adapter proteins, including MyD88 (myeloid differentiation primary response gene 88) and Mal (MyD88 adapter-like) for its signal transduction. TLR4 and the adapter proteins each contain a Toll/Il-1 receptor domain (TIR domain). In this study we used random mutagenesis and the mammalian two-hybrid method MAPPIT (mammalian protein-protein interaction trap) to identify mutations in Mal that disrupt its interaction with TLR4 and/or MyD88. Our study shows that four potential binding sites and the AB-loop in the Mal TIR domain all contribute to formation of the TLR4-Mal-MyD88 complex. Mutations in the symmetrical back-to-back Mal homodimer interface affect Mal homodimerization and interaction with MyD88 and TLR4. Our data suggest that Mal dimerization may lead to formation of potential binding platforms on the top and the side of the Mal dimer that bind MyD88 or TLR4. Mutations that affect the interaction of Mal with MyD88 also affect NF-κB activation induced by Mal overexpression. In MAPPIT, co-expression of the MyD88 TIR domain enhances Mal dimerization and Mal binding to TLR4. Similarly, co-expression of Mal and the MyD88 TIR domain strongly promotes dimerization of the TLR4 intracellular domain in MAPPIT. The different types of TIR-TIR interactions in the TLR4-Mal-MyD88 complex thus show cooperative binding in MAPPIT. We present plausible models for the TIR-TIR interactions in the TLR4-Mal-MyD88 complex.


Asunto(s)
Sitios de Unión , Modelos Biológicos , Factor 88 de Diferenciación Mieloide , Multimerización de Proteína/fisiología , Receptor Toll-Like 4 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Factor 88 de Diferenciación Mieloide/química , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Mapeo Peptídico/métodos , Unión Proteica , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
Methods Mol Biol ; 1880: 359-374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610710

RESUMEN

Autophagy is a highly regulated process, and its deregulation can contribute to various diseases, including cancer, immune diseases, and neurodegenerative disorders. Here we describe the design, protocol, and analysis of an imaging-based high-throughput screen with an endogenous autophagy readout. The screen uses a genome-wide siRNA library to identify autophagy regulators in mammalian cells.


Asunto(s)
Autofagia/genética , Técnicas de Silenciamiento del Gen/métodos , ARN Interferente Pequeño/metabolismo , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular , Técnicas de Silenciamiento del Gen/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección/instrumentación , Transfección/métodos
6.
Cancer Res ; 79(8): 1884-1898, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765601

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by metabolic changes in pancreatic cells caused by oncogenic mutations and dysregulation of p53. PDAC cell lines and PDAC-derived xenografts grow as a result of altered metabolic pathways, changes in stroma, and autophagy. Selective targeting and inhibition of one of these may open avenues for the development of new therapeutic strategies. In this study, we performed a genome-wide siRNA screen in a PDAC cell line using endogenous autophagy as a readout and identified several regulators of autophagy that were required for autophagy-dependent PDAC cell survival. Validation of two promising candidates, MPP7 (MAGUK p55 subfamily member 7, a scaffolding protein involved in cell-cell contacts) and MDH1 (cytosolic Malate dehydrogenase 1), revealed their role in early stages of autophagy during autophagosome formation. MPP7 was involved in the activation of YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted autophagy, whereas MDH1 was required for maintenance of the levels of the essential autophagy initiator serine-threonine kinase ULK1, and increased in the activity upon induction of autophagy. Our results provide a possible explanation for how autophagy is regulated by MPP7 and MDH1, which adds to our understanding of autophagy regulation in PDAC. SIGNIFICANCE: This study identifies and characterizes MPP7 and MDH1 as novel regulators of autophagy, which is thought to be responsible for pancreatic cancer cell survival.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Malato Deshidrogenasa/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/genética , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Proteínas Señalizadoras YAP
7.
Transcription ; 9(2): 131-136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28980873

RESUMEN

Autophagy is an essential cellular process that degrades cytoplasmic organelles and components. Precise control of autophagic activity is achieved by context-dependent signaling pathways. Recent studies have highlighted the involvement of transcriptional programs during autophagic responses to various signals. Here, we summarize the current understanding of the transcriptional regulation of autophagy.


Asunto(s)
Autofagia , Transcripción Genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Ciclo Celular , Código de Histonas , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
8.
Front Oncol ; 7: 28, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28316954

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell's homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues.

9.
Structure ; 24(3): 437-47, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26876098

RESUMEN

Members of the Toll-like receptor and interleukin-1 (IL-1) receptor families all signal via Toll/IL-1R (TIR) domain-driven assemblies with adaptors such as MyD88. We here combine the mammalian two-hybrid system MAPPIT and saturation mutagenesis to complement and extend crystallographic and nuclear magnetic resonance data, and reveal how TIR domains interact. We fully delineate the interaction sites on the MyD88 TIR domain for homo-oligomerization and for interaction with Mal and TLR4. Interactions between three sites drive MyD88 homo-oligomerization. The BB-loop interacts with the αE-helix, explaining how BB-loop mimetics inhibit MyD88 signaling. The αC'-helix interacts symmetrically. The MyD88 TIR domains thus assemble into a left-handed helix, compatible with the Myddosome death domain crystal structure. This assembly explains activation of MyD88 by Mal and by an oncogenic mutation, and regulation by phosphorylation. These findings provide a paradigm for the interaction of mammalian TIR domains.


Asunto(s)
Mutación , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Factor 88 de Diferenciación Mieloide/química , Factor 88 de Diferenciación Mieloide/genética , Sitios de Unión , Células HEK293 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA