Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 39(18): 8052-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737427

RESUMEN

The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates.


Asunto(s)
Disparidad de Par Base , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Adenilil Imidodifosfato/metabolismo , Algoritmos , Sitios de Unión , ADN/química , Dimerización , Nucleótidos/metabolismo , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray
2.
Proteins ; 78(3): 705-13, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19787775

RESUMEN

The HflX-family is a widely distributed but poorly characterized family of translation factor-related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0-A resolution in apo- and GDP-bound forms. The enzyme displays a two-domain architecture with a novel "HflX domain" at the N-terminus, and a classical G-domain at the C-terminus. The HflX domain is composed of a four-stranded parallel beta-sheet flanked by two alpha-helices on either side, and an anti-parallel coiled coil of two long alpha-helices that lead to the G-domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX-domain upon GTP-binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24-fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX-domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al GTP/química , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Electricidad Estática , Sulfolobus solfataricus/genética
3.
Nucleic Acids Res ; 35(5): 1737-49, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17317682

RESUMEN

The parD operon of Escherichia coli plasmid R1 encodes a toxin-antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid-kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid-Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid2-Kis2-Kid2-Kis2 complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid2-Kis2-Kid2 complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid2-Kis2)n complexes repress the kid-kis operon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regiones Operadoras Genéticas , Plásmidos/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Sitios de Unión , ADN Bacteriano/metabolismo , Dimerización , Regulación Bacteriana de la Expresión Génica , Modelos Genéticos , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo
4.
J Bacteriol ; 190(15): 5199-209, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18502867

RESUMEN

Hydroquinone 1,2-dioxygenase (HQDO), an enzyme involved in the catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB, was purified to apparent homogeneity. Ligandation with 4-hydroxybenzoate prevented the enzyme from irreversible inactivation. HQDO was activated by iron(II) ions and catalyzed the ring fission of a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes. HQDO was inactivated by 2,2'-dipyridyl, o-phenanthroline, and hydrogen peroxide and inhibited by phenolic compounds. The inhibition with 4-hydroxybenzoate (K(i) = 14 microM) was competitive with hydroquinone. Online size-exclusion chromatography-mass spectrometry revealed that HQDO is an alpha2beta2 heterotetramer of 112.4 kDa, which is composed of an alpha-subunit of 17.8 kDa and a beta-subunit of 38.3 kDa. Each beta-subunit binds one molecule of 4-hydroxybenzoate and one iron(II) ion. N-terminal sequencing and peptide mapping and sequencing based on matrix-assisted laser desorption ionization--two-stage time of flight analysis established that the HQDO subunits are encoded by neighboring open reading frames (hapC and hapD) of a gene cluster, implicated to be involved in 4-hydroxyacetophenone degradation. HQDO is a novel member of the family of nonheme-iron(II)-dependent dioxygenases. The enzyme shows insignificant sequence identity with known dioxygenases.


Asunto(s)
Hidroquinonas/metabolismo , Oxigenasas/aislamiento & purificación , Oxigenasas/metabolismo , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/metabolismo , 2,2'-Dipiridil/farmacología , Acetofenonas/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , ADN Bacteriano/genética , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Ácidos Grasos Insaturados/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Espectrometría de Masas , Datos de Secuencia Molecular , Peso Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Oxigenasas/química , Oxigenasas/genética , Parabenos/metabolismo , Fenantrolinas/farmacología , Subunidades de Proteína/química , Pseudomonas fluorescens/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
5.
Proteins ; 67(1): 219-31, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17206710

RESUMEN

The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demonstrated to neutralize Kid toxicity to a certain extent in the absence of native Kis. Here, we show that a high structural similarity exists between these antitoxins, using NMR spectroscopy. We report about the interactions between Kid and Kis that are responsible for neutralization of Kid toxicity and enhance autoregulation of parD transcription. Native macromolecular mass spectrometry data demonstrate that Kid and Kis form multiple complexes. At Kis:Kid ratios equal to or exceeding 1:1, as found in vivo in a plasmid-containing cell, various complexes are present, ranging from Kid(2)-Kis(2) tetramer up to Kis(2)-Kid(2)-Kis(2)-Kid(2)-Kis(2) decamer. When Kid is in excess of Kis, corresponding to an in vivo situation immediately after loss of the plasmid, the Kid(2)-Kis(2)-Kid(2) heterohexamer is the most abundant species. NMR chemical shift and intensity perturbations in the (1)H (15)N HSQC spectra of Kid and Kis, observed when titrating the partner protein, show that the interaction sites of Kid and Kis resemble those within the previously reported MazF(2)-MazE(2)-MazF(2) complex. Furthermore, we demonstrate that Kid(2)-MazE(2) tetramers can be formed via weak interactions involving a limited part of the Kis-binding residues of Kid. The functional roles of the identified Kid-Kis and Kid-MazE interaction sites and complexes in toxin neutralization and repression of transcription are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Antitoxinas , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Operón , Plásmidos/genética , Relación Estructura-Actividad
6.
FEBS J ; 274(9): 2311-21, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17419730

RESUMEN

A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.


Asunto(s)
Eugenol/metabolismo , Oxigenasas de Función Mixta/aislamiento & purificación , Rhodococcus/enzimología , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Catálisis , Escherichia coli/genética , Flavina-Adenina Dinucleótido/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Rhodococcus/genética , Especificidad por Sustrato
7.
J Mol Biol ; 357(1): 115-26, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16413033

RESUMEN

The toxin Kid and antitoxin Kis are encoded by the parD operon of Escherichia coli plasmid R1. Kid and its chromosomal homologues MazF and ChpBK have been shown to inhibit protein synthesis in cell extracts and to act as ribosome-independent endoribonucleases in vitro. Kid cleaves RNA preferentially at the 5' side of the A residue in the nucleotide sequence 5'-UA(A/C)-3' of single-stranded regions. Here, we show that RNA cleavage by Kid yields two fragments with a 2':3'-cyclic phosphate group and a free 5'-OH group, respectively. The cleavage mechanism is similar to that of RNases A and T1, involving the uracil 2'-OH group. Via NMR titration studies with an uncleavable RNA mimic, we demonstrate that residues of both monomers of the Kid dimer together form a concatenated RNA-binding surface. Docking calculations based on the NMR chemical shifts, the cleavage mechanism and previously reported mutagenesis data provide a detailed picture of the position of the AUACA fragment within the binding pocket. We propose that residues D75, R73 and H17 form the active site of the Kid toxin, where D75 and R73 are the catalytic base and acid, respectively. The RNA sequence specificity is defined by residues T46, S47, A55, F57, T69, V71 and R73. Our data show the importance of these residues for Kid function, and the implications of our results for related toxins, such as MazF, CcdB and RelE, are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN/metabolismo , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Dominio Catalítico , Citotoxinas/química , Proteínas de Unión al ADN/química , Dimerización , Escherichia coli/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Plásmidos , Unión Proteica , Conformación Proteica , ARN/química
8.
Protein Pept Lett ; 14(2): 113-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17305597

RESUMEN

Toxin-antitoxin systems were discovered as plasmid auxiliary maintenance cassettes. In recent years, an increasing amount of structural and functional information has become available about the proteins involved, allowing the understanding of bacterial cell growth inhibition by the toxins on a molecular level. A well-studied TA system is formed by the proteins Kid and Kis, encoded by the parD operon of the Escherichia coli plasmid R1. The toxicity of Kid has been related to its endoribonuclease activity, which is counteracted by binding of the antitoxin Kis at the proposed active site. In this review, the structural studies on the Kid-Kis system are compared to those of three related toxin-antitoxin systems: MazF-MazE, CcdB-CcdA and RelE-RelB.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Antitoxinas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Factores R/metabolismo , ARN/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
9.
Nucleic Acids Res ; 33(10): e96, 2005 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-15956101

RESUMEN

A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein-DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase-DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3'-hydroxy and 5'-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases.


Asunto(s)
Colicinas/metabolismo , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masa por Ionización de Electrospray , ADN de Cadena Simple/análisis , Hidrólisis , Especificidad por Sustrato , Factores de Tiempo
10.
J Am Soc Mass Spectrom ; 17(7): 983-994, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16713291

RESUMEN

To understand how proteins perform their function, knowledge about their structure and dynamics is essential. Here we use a combination of an efficient chemical lysine acetylation reaction and nanoLC-MALDI tandem mass spectrometry to probe the accessibility of every lysine residue in a protein complex. To demonstrate the applicability of this approach, we studied the interaction between the DNase domain of Colicin E9 (E9) and its immunity protein Im9. Free E9 and E9 in complex with Im9 were rapidly acetylated, followed by proteolytic digestion and analysis by LC-MALDI-TOF/TOF MS/MS. Acetylated peptides could be filtered out of the complex peptide mixtures using selective ion chromatograms of the specific immonium marker ions. Additionally, isobaric acetylated peptides, acetylated at different sites, could be separated by their LC retention times. The combination of LC and MALDI-TOF/TOF MS/MS provided information about the amount of acetylation on each individual lysine even for peptides containing several lysine residues. In general, our data agree well with those derived from the crystal structure of E9 and the E9:Im9 complex. Interestingly, next to in the binding interface expected lysines, K89 and K97, two from the crystal structure data unexpected lysines, K81 and K76, were observed to become less exposed upon Im9 binding. Moreover, K55 and K63, positioned in the predicted DNA binding region, were also found to be less accessible upon Im9 binding. These findings may illustrate some of the described differences in the solution-phase structure of the E9:Im9 complex compared with the crystal structure.


Asunto(s)
Proteínas Bacterianas/química , Cromatografía Líquida de Alta Presión/métodos , Colicinas/química , Proteínas de Escherichia coli/química , Lisina/química , Nanotecnología/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Acetilación , Sitios de Unión , Simulación por Computador , Microquímica/métodos , Modelos Químicos , Modelos Moleculares , Unión Proteica
11.
Curr Opin Chem Biol ; 8(5): 519-26, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15450495

RESUMEN

The development of electrospray ionization coupled to mass spectrometry has enabled the analysis of very large intact protein complexes, even when they are held together by weak non-covalent interactions. Together with equally spectacular advances in mass spectrometric instrumentation, a new field has emerged, termed native protein mass spectrometry, which focuses on the structural and functional analysis of the dynamics and interactions occurring in protein complexes. In the past two years, several important progressive steps in technologies have been reported that have led to exciting applications ranging from the detailed study of equilibria between different quaternary structures as influenced by environmental changes or binding of substrates or cofactors, to the analysis of intact nano-machineries, such as whole virus particles, proteasomes and ribosomes.


Asunto(s)
Espectrometría de Masas , Nanotecnología , Proteínas/química , Biopolímeros/química , Biopolímeros/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Especificidad por Sustrato , Virión/química , Virión/metabolismo
12.
J Mol Biol ; 330(1): 113-28, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12818206

RESUMEN

Glutamate synthases (GltS) are crucial enzymes in ammonia assimilation in plants and bacteria, where they catalyze the formation of two molecules of L-glutamate from L-glutamine and 2-oxoglutarate. The plant-type ferredoxin-dependent GltS and the functionally homologous alpha subunit of the bacterial NADPH-dependent GltS are complex four-domain monomeric enzymes of 140-165 kDa belonging to the NH(2)-terminal nucleophile family of amidotransferases. The enzymes function through the channeling of ammonia from the N-terminal amidotransferase domain to the FMN-binding domain. Here, we report the X-ray structure of the Synechocystis ferredoxin-dependent GltS with the substrate 2-oxoglutarate and the covalent inhibitor 5-oxo-L-norleucine bound in their physically distinct active sites solved using a new crystal form. The covalent Cys1-5-oxo-L-norleucine adduct mimics the glutamyl-thioester intermediate formed during L-glutamine hydrolysis. Moreover, we determined a high resolution structure of the GltS:2-oxoglutarate complex. These structures represent the enzyme in the active conformation. By comparing these structures with that of GltS alpha subunit and of related enzymes we propose a mechanism for enzyme self-regulation and ammonia channeling between the active sites. X-ray small-angle scattering experiments were performed on solutions containing GltS and its physiological electron donor ferredoxin (Fd). Using the structure of GltS and the newly determined crystal structure of Synechocystis Fd, the scattering experiments clearly showed that GltS forms an equimolar (1:1) complex with Fd. A fundamental consequence of this result is that two Fd molecules bind consecutively to Fd-GltS to yield the reduced FMN cofactor during catalysis.


Asunto(s)
Ferredoxinas/química , Ferredoxinas/metabolismo , Glutamato Sintasa/química , Glutamato Sintasa/metabolismo , Cristalografía por Rayos X , Cianobacterias/química , Diazooxonorleucina/química , Diazooxonorleucina/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Conformación Proteica , Compuestos de Amonio Cuaternario/química , Dispersión de Radiación
13.
J Mol Biol ; 342(2): 489-502, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15327949

RESUMEN

In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame (ORF) products of unknown function, we have determined the structure of YqhD at 2.0A resolution using the single wavelength anomalous diffraction method at the Pt edge. The crystal structure of YqhD reveals that it is an NADP-dependent dehydrogenase, a result confirmed by activity measurements with several alcohols. The current interpretation of our findings is that YqhD is an alcohol dehydrogenase (ADH) with preference for alcohols longer than C(3). YqhD is a dimer of 2x387 residues, each monomer being composed of two domains, a Rossmann-type fold and an alpha-helical domain. The crystals contain two dimers in the asymmetric unit. While one of the dimers contains a cofactor in both subunits, only one of the subunits in the second dimer contains it, making it possible to compare bound and unbound active sites. The active site contains a Zn atom, as verified by EXAFS on the crystals. The electron density maps of NADP revealed modifications of the nicotinamide ring by oxygen atoms at positions 5 and 6. Further analysis by electrospray mass spectrometry and comparison with the mass spectra of NADP and NADPH revealed the nature of the modification and the incorporation of two hydroxyl moieties at the 5 and 6 position in the nicotinamide ring, yielding NADPH(OH)(2). These modifications might be due to oxygen stress on an enzyme, which would functionally work under anaerobic conditions.


Asunto(s)
Alcohol Deshidrogenasa/química , Coenzimas/química , Escherichia coli/química , NADP/metabolismo , Alcohol Deshidrogenasa/metabolismo , Dominio Catalítico , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/metabolismo , Cinética , Espectrometría de Masas , Modelos Moleculares , Niacinamida/química , Niacinamida/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
14.
PLoS One ; 7(7): e41363, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829943

RESUMEN

In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.


Asunto(s)
Flavodoxina/metabolismo , Apoproteínas/metabolismo , Azotobacter vinelandii/efectos de los fármacos , Azotobacter vinelandii/metabolismo , Mononucleótido de Flavina/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica
16.
J Mol Biol ; 385(3): 949-62, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19013466

RESUMEN

Comparative analysis of the genome of the hyperthermophilic bacterium Thermotoga maritima revealed a hypothetical protein (EstA) with typical esterase features. The EstA protein was functionally produced in Escherichia coli and purified to homogeneity. It indeed displayed esterase activity with optima at or above 95 degrees C and at pH 8.5, with a preference for esters with short acyl chains (C2-C10). Its 2.6-A-resolution crystal structure revealed a classical alpha/beta hydrolase domain with a catalytic triad consisting of a serine, an aspartate, and a histidine. EstA is irreversibly inhibited by the organophosphate paraoxon. A 3.0-A-resolution structure confirmed that this inhibitor binds covalently to the catalytic serine residue of EstA. Remarkably, the structure also revealed the presence of an N-terminal immunoglobulin (Ig)-like domain, which is unprecedented among esterases. EstA forms a hexamer both in the crystal and in solution. Electron microscopy showed that the hexamer in solution is identical with the hexamer in the crystal, which is formed by two trimers, with the N-terminal domains facing each other. Mutational studies confirmed that residues Phe89, Phe112, Phe116, Phe246, and Trp377 affect enzyme activity. A truncated mutant of EstA, in which the Ig-like domain was removed, showed only 5% of wild-type activity, had lower thermostability, and failed to form hexamers. These data suggest that the Ig-like domain plays an important role in the enzyme multimerization and activity of EstA.


Asunto(s)
Esterasas/química , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Escherichia coli/genética , Esterasas/genética , Esterasas/metabolismo , Cinética , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , Thermotoga maritima/enzimología
17.
FEBS J ; 275(20): 5191-200, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18793324

RESUMEN

Vanillyl-alcohol oxidase (VAO; EC 1.1.3.38) contains a covalently 8alpha-histidyl bound FAD, which represents the most frequently encountered covalent flavin-protein linkage. To elucidate the mechanism by which VAO covalently incorporates the FAD cofactor, apo VAO was produced by using a riboflavin auxotrophic Escherichia coli strain. Incubation of apo VAO with FAD resulted in full restoration of enzyme activity. The rate of activity restoration was dependent on FAD concentration, displaying a hyperbolic relationship (K(FAD )= 2.3 microM, k(activation) = 0.13 min(-1)). The time-dependent increase in enzyme activity was accompanied by full covalent incorporation of FAD, as determined by SDS/PAGE and ESI-MS analysis. The results obtained show that formation of the covalent flavin-protein bond is an autocatalytic process, which proceeds via a reduced flavin intermediate. Furthermore, ESI-MS experiments revealed that, although apo VAO mainly exists as monomers and dimers, FAD binding promotes the formation of VAO dimers and octamers. Tandem ESI-MS experiments revealed that octamerization is not dependent on full covalent flavinylation.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Catálisis , Dimerización , Proteínas de Escherichia coli , Cinética , Unión Proteica
18.
J Biol Chem ; 283(42): 28259-64, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18678871

RESUMEN

Putrescine oxidase from Rhodococcus erythropolis NCIMB 11540 (PuO(Rh)) is a soluble homodimeric flavoprotein of 100 kDa, which catalyzes the oxidative deamination of putrescine and some other aliphatic amines. The initial characterization of PuO(Rh) uncovered an intriguing feature: the enzyme appeared to contain only one noncovalently bound FAD cofactor per dimer. Here we show that this low FAD/protein ratio is the result of tight binding of ADP, thereby competing with FAD binding. MS analysis revealed that the enzyme is isolated as a mixture of dimers containing two molecules of FAD, two molecules ADP, or one FAD and one ADP molecule. In addition, based on a structural model of PuO(Rh) that was built using the crystal structure of human monoamine oxidase B (MAO-B), we constructed an active mutant enzyme, PuO(Rh) A394C, that contains covalently bound FAD. These findings show that the covalent FAD-protein linkage can be formed autocatalytically and hint to a new-found rationale for covalent flavinylation: covalent flavinylation may have evolved to prevent binding of ADP or related cellular compounds, which would prohibit formation of flavinylated and functional enzyme.


Asunto(s)
Adenosina Difosfato/química , Flavina-Adenina Dinucleótido/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Rhodococcus/metabolismo , Catálisis , Dominio Catalítico , Dimerización , Flavinas/química , Cinética , Espectrometría de Masas/métodos , Modelos Químicos , Monoaminooxidasa/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxígeno/química , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray
19.
Chembiochem ; 8(3): 298-305, 2007 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-17206730

RESUMEN

Chemical proteomics is a powerful methodology for identifying the cellular targets of small molecules, however, it is biased towards abundant proteins. Therefore, quantitative strategies are needed to distinguish between specific and nonspecific interactions. Here, we explore the potential of the combination of surface plasmon resonance (SPR) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) as an alternative approach in chemical proteomics. We coupled cGMP molecules to the SPR chip, and monitored the binding and dissociation of proteins from a human lysate by using sequential elution steps and SPR. The eluted proteins were subsequently identified by LC-MS/MS. Our approach enabled the efficient and selective extraction of low-abundant cyclic-nucleotide-binding proteins such as cGMP-dependent protein kinase, and a quantitative assessment of the less- and nonspecific competitive binding proteins. The data show that SPR-based chemical proteomics is a promising alternative for the efficient specific extraction and quantitative identification of small-molecule-binding proteins from complex mixtures.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/análisis , Proteómica/métodos , Línea Celular , Cromatografía Liquida , Proteínas Quinasas Dependientes de GMP Cíclico/química , Humanos , Espectrometría de Masas , Nucleótidos Cíclicos/química , Unión Proteica , Resonancia por Plasmón de Superficie
20.
J Biol Chem ; 282(15): 11281-90, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17303561

RESUMEN

The transcriptional activator CprK1 from Desulfitobacterium-hafniense, a member of the ubiquitous cAMP receptor protein/fumarate nitrate reduction regulatory protein family, activates transcription of genes encoding proteins involved in reductive dehalogenation of chlorinated aromatic compounds. 3-chloro-4-hydroxyphenylacetate is a known effector for CprK1, which interacts tightly with the protein, and induces binding to a specific DNA sequence ("dehalobox," TTAAT--ATTAA) located in the promoter region of chlorophenol reductive dehalogenase genes. Despite the availability of recent x-ray structures of two CprK proteins in distinct states, the mechanism by which CprK1 activates transcription is poorly understood. In the present study, we have investigated the mechanism of CprK1 activation and its effector specificity. By using macromolecular native mass spectrometry and DNA binding assays, analogues of 3-chloro-4-hydroxyphenylacetate that have a halogenated group at the ortho position and a chloride or acetic acid group at the para position were found to be potent effectors for CprK1. By using limited proteolysis it was demonstrated that CprK1 requires a cascade of structural events to interact with dehalobox dsDNA. Upon reduction of the intermolecular disulfide bridge in oxidized CprK1, the protein becomes more dynamic, but this alone is not sufficient for DNA binding. Activation of CprK1 is a typical example of allosteric regulation; the binding of a potent effector molecule to reduced CprK1 induces local changes in the N-terminal effector binding domain, which subsequently may lead to changes in the hinge region and as such to structural changes in the DNA binding domain that are required for specific DNA binding.


Asunto(s)
Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , Activación Transcripcional , Sitios de Unión , Proteína Receptora de AMP Cíclico/genética , ADN/genética , ADN/metabolismo , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA