RESUMEN
The amyloid peptides Aß(40) and Aß(42) of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aß(42) seems more pathogenic than Aß(40), the reason for this is not well understood. We show here that small alterations in the Aß(42):Aß(40) ratio dramatically affect the biophysical and biological properties of the Aß mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aß(42):Aß(40) ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aß species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aß peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti-amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non-toxic intermediates.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Neuronas/metabolismo , Fragmentos de Péptidos/toxicidad , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Análisis de Varianza , Animales , Benzotiazoles , Biofisica , Colorantes Fluorescentes , Humanos , Cinética , Ratones , Microelectrodos , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , TiazolesRESUMEN
Current therapeutic approaches under development for Alzheimer disease, including γ-secretase modulating therapy, aim at increasing the production of Aß(1-38) and Aß(1-40) at the cost of longer Aß peptides. Here, we consider the aggregation of Aß(1-38) and Aß(1-43) in addition to Aß(1-40) and Aß(1-42), in particular their behavior in mixtures representing the complex in vivo Aß pool. We demonstrate that Aß(1-38) and Aß(1-43) aggregate similar to Aß(1-40) and Aß(1-42), respectively, but display a variation in the kinetics of assembly and toxicity due to differences in short timescale conformational plasticity. In biologically relevant mixtures of Aß, Aß(1-38) and Aß(1-43) significantly affect the behaviors of Aß(1-40) and Aß(1-42). The short timescale conformational flexibility of Aß(1-38) is suggested to be responsible for enhancing toxicity of Aß(1-40) while exerting a cyto-protective effect on Aß(1-42). Our results indicate that the complex in vivo Aß peptide array and variations thereof is critical in Alzheimer disease, which can influence the selection of current and new therapeutic strategies.
Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/fisiología , Fragmentos de Péptidos/química , Multimerización de Proteína , Enfermedad de Alzheimer/metabolismo , Secuencias de Aminoácidos , Amiloide/farmacología , Amiloide/ultraestructura , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/fisiología , Benzotiazoles , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Humanos , Cinética , Microscopía de Fuerza Atómica , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/fisiología , Estructura Cuaternaria de Proteína , Tiazoles/químicaRESUMEN
In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll-protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10-20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)-light-harvesting 1 (RC-LH1-PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Fotosíntesis , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Dimerización , Microscopía de Fuerza Atómica , Estructura Cuaternaria de Proteína , Rhodobacter sphaeroides/citologíaRESUMEN
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 +/- 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 +/- 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 +/- 7 MPa at ambient conditions and to 3.4 +/- 0.2 MPa in phosphate-buffered saline.
Asunto(s)
Biofisica/métodos , Colágeno Tipo I/química , Reactivos de Enlaces Cruzados/química , Animales , Anisotropía , Bovinos , Colágeno/química , Diseño de Equipo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Microscopía de Fuerza Atómica , Modelos Estadísticos , Presión , Estrés Mecánico , TemperaturaRESUMEN
The mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers. The electrospun fibers were water soluble and became insoluble after cross-linking with glutaraldehyde vapor for 24h. The bending moduli and shear moduli of both non- and cross-linked single electrospun collagen fibers were determined by scanning mode bending tests after depositing the fibers on glass substrates containing micro-channels. The bending moduli of the electrospun fibers ranged from 1.3 to 7.8 GPa at ambient conditions and ranged from 0.07 to 0.26 MPa when immersed in PBS buffer. As the diameter of the fibrils increased, a decrease in bending modulus was measured clearly indicating mechanical anisotropy of the fiber. Cross-linking of the electrospun fibers with glutaraldehyde vapor increased the shear modulus of the fiber from approximately 30 to approximately 50 MPa at ambient conditions.
Asunto(s)
Colágeno Tipo I/química , Electroquímica/métodos , Algoritmos , Anisotropía , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Glutaral/química , Mecánica , Microscopía Electrónica de Rastreo , Propanoles/química , Resistencia al Corte , Estrés Mecánico , Propiedades de Superficie , Agua/químicaRESUMEN
Fluorescent self-assembled monolayers (SAMs) are used as dip-pen nanolithography (DPN) substrates for the fabrication of patterns of Ca(2+) and Cu(2+) ions. The driving force for the transfer of these ions from an atomic force microscopy (AFM) tip to the surface is their complexation to organic ligands on the monolayer. By means of fluorescent surfaces, the patterns can be visualized under a fluorescence microscope. We use a custom-built atomic force fluorescence microscope (AFFM), a combination of atomic force and confocal fluorescence microscopes, to deposit the metal ions onto the sensing SAMs by DPN and to subsequently visualize modulations of fluorescence intensity in a sequential write-read mode.
Asunto(s)
Vidrio , Metales/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Iones/química , Microscopía de Fuerza Atómica , Microscopía Confocal , Estructura MolecularRESUMEN
A new micromechanical technique was developed to study the mechanical properties of single collagen fibrils. Single collagen fibrils, the basic components of the collagen fiber, have a characteristic highly organized structure. Fibrils were isolated from collagenous materials and their mechanical properties were studied with atomic force microscopy (AFM). In this study, we determined the Young's modulus of single collagen fibrils at ambient conditions from bending tests after depositing the fibrils on a poly(dimethyl siloxane) (PDMS) substrate containing micro-channels. Force-indentation relationships of freely suspended collagen fibrils were determined by loading them with a tip-less cantilever. From the deflection-piezo displacement curve, force-indentation curves could be deduced. With the assumption that the behavior of collagen fibrils can be described by the linear elastic theory of isotropic materials and that the fibrils are freely supported at the rims, a Young's modulus of 5.4 +/- 1.2 GPa was determined. After cross-linking with glutaraldehyde, the Young's modulus of a single fibril increases to 14.7 +/- 2.7 GPa. When it is assumed that the fibril would be fixed at the ends of the channel the Young's moduli of native and cross-linked collagen fibrils are calculated to be 1.4 +/- 0.3 GPa and 3.8 +/- 0.8 GPa, respectively. The minimum and maximum values determined for native and glutaraldehyde cross-linked collagen fibrils represent the boundaries of the Young's modulus.
Asunto(s)
Materiales Biocompatibles/química , Colágeno Tipo I/química , Animales , Fenómenos Biomecánicos/métodos , Bovinos , Colágeno Tipo I/ultraestructura , Dimetilpolisiloxanos , Técnicas In Vitro , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de RastreoRESUMEN
A novel method based on AFM was used to attach individual collagen fibrils between a glass surface and the AFM tip, to allow force spectroscopy studies of these. The fibrils were deposited on glass substrates that are partly coated with Teflon AF. A modified AFM tip was used to accurately deposit epoxy glue droplets on either end of the collagen fibril that cross the glass-Teflon AF interface, as to such attach it with one end to the glass and the other end to the AFM tip. Single collagen fibrils have been mechanically tested in ambient conditions and were found to behave reversibly up to stresses of 90 MPa. Within this regime a Young's modulus of 2-7 GPa was obtained. In aqueous media, the collagen fibrils could be tested reversibly up to about 15 MPa, revealing Young's moduli ranging from 0.2 to at most 0.8 GPa.
Asunto(s)
Fenómenos Biomecánicos/métodos , Colágenos Fibrilares/química , Colágenos Fibrilares/fisiología , Microscopía de Fuerza Atómica/métodos , Tendón Calcáneo/química , Animales , Bovinos , Resistencia al Corte , Estrés MecánicoRESUMEN
Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM® have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different operating frequencies. However, complex materials are known to display viscoelastic behavior, a combination of solid and fluid-like responses, depending on the frequency at which the sample is probed. In this report, we show that the frequency-dependent mechanical behavior of complex materials, such as polymer blends that are frequently used as calibration samples, is clearly measurable with AFM. Although this frequency-dependent mechanical behavior is an established observation, we demonstrate that the new high frequency mapping techniques enable AFM-based rheology with nanoscale spatial resolution over a much broader frequency range compared to previous AFM-based studies. We further highlight that it is essential to account for the frequency-dependent variation in mechanical properties when using these thin polymer samples as calibration materials for elasticity measurements by high-frequency surface property mapping techniques. These results have significant implications for the accurate interpretation of the nanomechanical properties of polymers or complex biological samples. The calibration sample is composed of a blend of soft and hard polymers, consisting of low-density polyethylene (LDPE) islands in a polystyrene (PS) surrounding, with a stiffness of 0.2 GPa and 2 GPa respectively. The spring constant of the AFM cantilever was selected to match the stiffness of LDPE. From 260 Hz to 1100 Hz the sample was imaged with the PFM method. At low frequencies (0.5-35 Hz), single-point nanoindentation was performed. In addition to the material's stiffness, the relative heights of the LDPE islands (with respect to the PS) were determined as a function of the frequency. At the lower operation frequencies for PFM, the islands exhibited lower heights than when measured with tapping mode at 120 kHz. Both spring constants and heights at the different frequencies clearly show a frequency-dependent behavior.
Asunto(s)
Pruebas de Dureza/métodos , Ensayo de Materiales/métodos , Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Módulo de Elasticidad , Dureza , Propiedades de SuperficieRESUMEN
Atomic force microscopy (AFM) is widely used to measure morphological and mechanical properties of biological materials at the nanoscale. AFM is able to visualize and measure these properties in different environmental conditions. However, these conditions can influence the results considerably, rendering their interpretation a matter of some subtlety. We demonstrate this by imaging ~10 nm diameter α-synuclein amyloid fibrils, focusing specifically on the structure of the C-terminal part of the protein monomers incorporated into fibrils. Despite these influences leading to variations in fibril heights, we have shown that by maintaining careful control of AFM settings we can quantitatively compare the morphological parameters of fibrils imaged in air or in buffer conditions. From this comparison we were able to deduce the semiflexible character of this C-terminal region. Fibril height differences measured in air and liquid indicate that the C-terminal region collapses onto the fibril core upon drying. The fibril heights decrease upon increasing ion concentration in solution, suggesting that the C-terminal tails collapse into more compact structures as a result of charge screening. Finally, PeakForce QNM measurements show an apparent heterogeneity of C-terminal packing along the fibril length.
Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Sustitución de Aminoácidos , Amiloide/ultraestructura , Humanos , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Nanotecnología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructuraRESUMEN
We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method.
RESUMEN
Micromechanical properties of single elastic fibers and fibrillin-microfibrils, isolated from equine ligamentum nuchae using chemical and enzymatic methods, were determined with atomic force microscopy (AFM). Young's moduli of single elastic fibers immersed in water, devoid of or containing fibrillin-microfibrils, were determined using bending tests. Bending freely suspended elastic fibers on a micro-channeled substrate by a tip-less AFM cantilever generated a force versus displacement curve from which Young's moduli were calculated. For single elastic fibers, Young's moduli in the range of 0.3-1.5 MPa were determined, values not significantly affected by the presence of fibrillin-microfibrils. To further understand the role of fibrillin-microfibrils in vertebrate elastic fibers, layers of fibrillin-microfibrils were subjected to nano-indentation tests. From the slope of the force versus indentation curves, Young's moduli ranging between 0.56 and 0.74 MPa were calculated. The results suggest that fibrillin-microfibrils are not essential for the mechanical properties of single vertebrate elastic fibers.
Asunto(s)
Tejido Elástico/química , Microfibrillas/química , Proteínas de Microfilamentos/química , Tejido Elástico/ultraestructura , Fibrilinas , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Estrés MecánicoRESUMEN
We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.
RESUMEN
The aggregation of proteins into fibrillar structures called amyloid is a characteristic of many diseases, including several neurodegenerative disorders. Although amyloid formation is inherent to several serious diseases, the mechanism of fibril formation and the modes of toxicity are not yet known. High concentrations of fibrillar aggregates of ¿-synuclein protein are found in the brains of patients suffering from Parkinson's disease. We exploit different contrast modes of high resolution atomic force microscopy (AFM) on fibrils formed by the wild-type alpha-synuclein protein, and by the familial disease-related A30P, E46K and A53T variants, to get more insight into the in vitro process of fibril assembly. From quantitative analysis of height images measured in tapping mode AFM, we obtained data that are compatible with a twisted hierarchical assembly model [1] for all protein variants. The E46K mutant displays the most distinct and smallest periodicity. The modulation depth for all mutants is very similar, and is smaller for wild-type protein commensurate with the lower fibril height. The detailed morphology observed in phase images indicates however that fibrils may also be formed through the association of fibril segments. To study the mechanical properties of fibrils we applied force while scanning in contact mode, resulting in characteristic deformation of protein fibrils with a periodicity corresponding to the modulation observed in tapping mode. Our observations suggest that the hierarchical assembly model may not be the exclusive mechanism of alpha-synuclein fibril assembly, but that multiple modes of fibril assembly play a role in alpha-synuclein fibril formation.
Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Humanos , Microscopía de Fuerza Atómica , Mutación , Nanoestructuras , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , alfa-Sinucleína/genéticaRESUMEN
Previous electron microscopic studies of bacterial RCLH1 complexes demonstrated both circular and elliptical conformations of the LH1 ring, and this implied flexibility has been suggested to allow passage of quinol from the Q(B) site of the RC to the quinone pool prior to reduction of the cytochrome bc(1) complex. We have used atomic force microscopy to demonstrate that these are just two of many conformations for the LH1 ring, which displays large molecule-to-molecule variations, in terms of both shape and size. This atomic force microscope study has used a mutant lacking the reaction center complex, which normally sits within the LH1 ring providing a barrier to substantial changes in shape. This approach has revealed the inherent flexibility and lack of structural coherence of this complex in a reconstituted lipid bilayer at room temperature. Circular, elliptical, and even polygonal ring shapes as well as arcs and open rings have been observed for LH1; in contrast, no such variations in structure were observed for the LH2 complex under the same conditions. The basis for these differences between LH1 and LH2 is suggested to be the H-bonding patterns that stabilize binding of the bacteriochlorophylls to the LH polypeptides. The existence of open rings and arcs provides a direct visualization of the consequences of the relatively weak associations that govern the aggregation of the protomers (alpha(1)beta(1)Bchl(2)) comprising the LH1 complex. The demonstration that the linkage between adjacent protomer units is flexible and can even be uncoupled at room temperature in a detergent-free membrane bilayer provides a rationale for the dynamic separation of individual protomers, and we may now envisage experiments that seek to prove this active opening process.
Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Complejos de Proteína Captadores de Luz/metabolismo , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Conformación Proteica , Rhodospirillum rubrum/metabolismo , Rhodospirillum rubrum/ultraestructuraRESUMEN
The structure of individual nucleosomes organized within reconstituted 208-12 arrays at different levels of compaction was examined by tapping mode atomic force microscopy in air and liquid. Reconstitution at lower histone octamer to DNA weight ratios showed an extended beads-on-a-string morphology with less than the expected maximum of 12 nucleosome core particles per array, each particle located in the most favored positioning site. A correlation of the contour lengths of these arrays with the number of observed particles revealed two distinct populations of particles, one with approximately 50 nm of bound DNA and a second population with approximately 25 nm. The measured nucleosome center-to-center distances indicate that this approximately 25 nm is not necessarily symmetrically bound about the dyad axis, but can also correspond to DNA bound from either the entry or exit point of the particle to a location at or close to the dyad axis. An assessment of particle heights suggests that particles wrapping approximately 25 nm of DNA are most likely to be subnucleosomal particles, which lack either one or both H2A-H2B dimers. At a higher reconstitution ratio, folded compact arrays fully populated with 12 nucleosome core particles, were observed. Liquid measurements demonstrated dynamic movements of DNA loops protruding from these folded arrays.