Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Med Phys ; 38(4): 1919-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21626925

RESUMEN

PURPOSE: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. METHODS: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. RESULTS: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was +/- 7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. CONCLUSIONS: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.


Asunto(s)
Dosimetría por Película/instrumentación , Dosimetría por Película/normas , Piel/efectos de la radiación , Análisis Espectral/normas , Aire , Calibración , Color , Fluoroscopía , Método de Montecarlo , Fantasmas de Imagen , Dispersión de Radiación , Piel/diagnóstico por imagen , Factores de Tiempo , Incertidumbre , Rayos X
2.
Med Phys ; 38(1): 283-93, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21361197

RESUMEN

PURPOSE: Quantitative coronary angiography (QCA) can be used to support device size selection for cardiovascular interventions. The accuracy of QCA measurements using conventional x-ray fluoroscopy depends on proper calibration using a reference object and avoiding vessel foreshortening. The authors have developed a novel interventional device sizing method using the inverse geometry scanning-beam digital x-ray (SBDX) fluoroscopy system. The proposed method can measure the diameter and length of vessel segments without imaging a reference object and when vessels appear foreshortened. METHODS: SBDX creates multiple tomosynthetic x-ray images corresponding to planes through the patient volume. The structures that lie in the plane are in focus and the features above and below the plane are blurred. Three-dimensional localization of the vessel edges was performed by examining the degree of blurring at each image plane. A 3D vessel centerline was created and used to determine vessel magnification and angulation relative to the image planes. Diameter measurements were performed using a model-based method and length measurements were calculated from the 3D centerline. Phantom validation was performed by measuring the diameter and length of vessel segments with nominal diameters ranging from 0.5 to 2.8 mm and nominal lengths of 42 mm. The phantoms were imaged at a range of positions between the source and the detector (+/- 16 cm relative to isocenter) and with a range of foreshortening angles (0 degrees-75 degrees). RESULTS: Changes in vessel phantom position created magnifications ranging from 87% to 118% relative to isocenter magnification. Average diameter errors were less than 0.15 mm. Average length measurements were within 1% (0.3 mm) of the true length. No trends were observed between measurement accuracy and magnification. Changes in vessel phantom orientation resulted in decreased apparent length down to 28% of the original nonforeshortened length. Average diameter errors were less than 0.25 mm across all vessel angulations; errors were less than 0.1 mm for smaller diameter vessels and low to moderate vessel angles. Diameter errors increased with true diameter and vessel angle relative to the image plane. Average length measurement errors were also within 1% (0.3 mm) for each angulation. CONCLUSIONS: Tomosynthetic imaging with SBDX can accurately measure dimensions of vessels in various magnifications and angulations without calibration. This method may be more accurate and convenient than conventional QCA techniques.


Asunto(s)
Angiografía Coronaria/instrumentación , Fluoroscopía/instrumentación , Algoritmos , Angiografía Coronaria/normas , Estudios de Factibilidad , Fluoroscopía/normas , Imagenología Tridimensional , Fantasmas de Imagen , Rayos X
3.
Med Phys ; 37(12): 6377-89, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21302795

RESUMEN

PURPOSE: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. METHODS: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm2 mean detected x-ray fluence at isocenter). RESULTS: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0 +/- 0.8 mm (mean +/- one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error (+/- 0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds. The tracking precision of ablation and diagnostic catheter tips ranged from +/- 0.2 mm at the highest image fluence to +/- 0.9 mm at the lowest fluence. Tracking precision depended on image fluence, the size of the tracked catheter electrode, and the contrast of the electrode. CONCLUSIONS: High speed multiplanar tomosynthesis with an inverse geometry x-ray fluoroscopy system enables 3D tracking of multiple high-contrast objects at the rate of fluoroscopic imaging. The SBDX system is capable of tracking electrodes in standard cardiac catheters with approximately 1 mm accuracy and precision.


Asunto(s)
Catéteres , Fluoroscopía/métodos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Algoritmos , Movimiento (Física) , Fantasmas de Imagen
4.
Arch Ophthalmol ; 124(6): 860-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16769840

RESUMEN

OBJECTIVE: To develop a quantitative measure of regional variation in choroidal blood flow (ChBF). METHODS: Five million 15-microm fluorescent microspheres were injected into the left ventricles of 4 rabbits and 3 monkeys. The fixed globes were bleached, flat mounted, and photomicrographed. After image analysis to locate each microsphere, regional densities and blood flow were determined. RESULTS: Regional variation in ChBF was clearly evident. In the rabbit, a high density of spheres was seen in the visual streak. This was surrounded by a middle peripheral area of low sphere density and a far peripheral region of moderately high density. In the monkeys, sphere density was markedly greater in the macula compared with the periphery. Contour plots produced lines of constant flow that were oval and extended farther nasally than temporally in the monkeys. The ratio of central to peripheral ChBF was much greater in the monkeys than in the rabbits. CONCLUSION: Quantitative assessment of regional ChBF can be performed using a modification of the fluorescent microsphere impaction method. CLINICAL RELEVANCE: This method of determining regional ChBF will be useful for studying the vascular effects of pharmacologic agents and for characterizing animal models of human disease involving the outer retina.


Asunto(s)
Coroides/irrigación sanguínea , Colorantes Fluorescentes , Hemorreología/métodos , Microesferas , Animales , Velocidad del Flujo Sanguíneo , Macaca fascicularis , Macaca mulatta , Microscopía Fluorescente , Conejos , Flujo Sanguíneo Regional/fisiología
5.
Med Phys ; 33(8): 2714-27, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16964847

RESUMEN

The scanning-beam digital x-ray (SBDX) system is designed for x-ray dose reduction in cardiac angiographic applications. Scatter reduction, efficient detection of primary x-rays, and an inverse beam geometry are the main components of the entrance dose reduction strategy. This paper reports the construction of an SBDX prototype, image reconstruction techniques, and measurements of spatial resolution and x-ray output. The x-ray source has a focal spot that is electronically scanned across a large-area transmission target. A multihole collimator beyond the target defines a series of x-ray beams directed at a distant small-area detector array. The prototype has a 23 cm X 23 cm target, 100 X 100 focal spot positions, and a 5 cm X 5 cm CdTe detector positioned 150 cm from the target. With this nonmechanical method of beam scanning, patient images with low detected scatter are generated at up to 30 frame/s. SBDX data acquisition is tomosynthetic. The prototype simultaneously reconstructs 16 planes spaced throughout the cardiac volume using shift-and-add backprojection. Image frames analogous to conventional projection images are generated with a multiplane compositing algorithm. Single-plane versus multiplane reconstruction of contrast-filled coronary arteries is demonstrated with images of the porcine heart. Phantom and porcine imaging studies show multiplane reconstruction is practicable under clinically realistic levels of patient attenuation and cardiac motion. The modulation transfer function for an in-plane slit at mechanical isocenter measured 0.41-0.56 at 1 cycle/mm, depending on the detector element to image pixel interpolation technique. Modeling indicates that desired gains in spatial resolution are achievable by halving the detector element width. The x-ray exposure rate 15 cm below isocenter, without table or patient in the beam, measured 11.5 R/min at 120 kVp, 24.3 kWp and 3.42 R/min at 70 kVp, 14.2 kWp.


Asunto(s)
Angiografía/instrumentación , Biotecnología/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Radiología Intervencionista/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Angiografía/métodos , Biotecnología/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Proyectos Piloto , Intensificación de Imagen Radiográfica/métodos , Radiología Intervencionista/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Med Phys ; 33(8): 2728-43, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16964848

RESUMEN

The scanning-beam digital x-ray (SBDX) system uses an inverse geometry, narrow x-ray beam, and a 2-mm thick CdTe detector to improve the dose efficiency of the coronary angiographic procedure. Entrance exposure and large-area iodine signal-to-noise ratio (SNR) were measured with the SBDX prototype and compared to that of a clinical cardiac interventional system with image intensifier (II) and charge coupled device (CCD) camera (Philips H5000, MRC-200 x-ray tube, 72 kWp max). Phantoms were 18.6-35.0 cm acrylic with an iohexol-equivalent disk placed at midthickness (35 mg/cm2 iodine radiographic density). Imaging was performed at 15 frame/s, with the disk at mechanical isocenter and an 11-cm object-plane field width. The II/CCD system was operated in cine mode with automatic exposure control. With the SBDX prototype at maximum x-ray output (120 kVp, 24.3 kWp), the SBDX SNR was 107%-69% of the II/CCD SNR, depending on phantom thickness, and the SBDX entrance exposure rate was 10.7-9.3 R/min (9.4-8.2 cGy/min air kerma). For phantoms where an equal-kVp imaging comparison was possible (> or = 23.3 cm), the SBDX SNR ranged from 47% to 69% of the II/CCD SNR while delivering 6% to 9% of the II/CCD entrance exposure rate. From these measurements it was determined that the relative SBDX entrance exposure at equal SNR would be 31%-16%. Results were consistent with a model for relative entrance exposure at equal SNR, which predicted a 3-7 times reduction in entrance exposure due to SBDX's comparatively low scatter fraction (5.5%-8.1% measured, including off-focus radiation), high detector detective quantum efficiency (66%-73%, measured from 70 to 120 kVp), and large entrance field area (1.7x - 2.3x, for the same object-plane field width). With improvements to the system geometry, detector, and x-ray source, SBDX technology is projected to achieve conventional cine-quality SNR over a full range of patient thicknesses, with 5-10 times lower skin dose.


Asunto(s)
Angiografía/instrumentación , Biotecnología/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Radiología Intervencionista/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Angiografía/métodos , Artefactos , Biotecnología/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Proyectos Piloto , Intensificación de Imagen Radiográfica/métodos , Radiología Intervencionista/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
IEEE Trans Biomed Eng ; 49(6): 520-6, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12046696

RESUMEN

We used the finite-element method (FEM) to model and analyze the resistance between the catheter tip electrode and the dispersive electrode during radio-frequency cardiac catheter ablation for the prediction of myocardium-electrode contact. We included deformation of the myocardial surface to achieve accurate modeling. For perpendicular catheter contact, we measured the side view of myocardial deformation using X-ray projection imaging. We averaged the deformation contour from nine samples, and then incorporated the contour information into our FEM model. We measured the resistivity of the bovine myocardium using the four-electrode method, and then calculated the resistance change as the catheter penetrated into the myocardium. The FEM result of resistance versus catheter penetration depth matches well with our experimental data.


Asunto(s)
Ablación por Catéter/métodos , Análisis de Elementos Finitos , Modelos Cardiovasculares , Miocardio/patología , Animales , Ablación por Catéter/instrumentación , Bovinos , Elasticidad , Impedancia Eléctrica , Electrodos , Procesamiento de Imagen Asistido por Computador , Ondas de Radio , Estrés Mecánico
8.
Proc SPIE Int Soc Opt Eng ; 9033: 90332H, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24999298

RESUMEN

Proper sizing of interventional devices to match coronary vessel dimensions improves procedural efficiency and therapeutic outcomes. We have developed a novel method using inverse geometry x-ray fluoroscopy to automatically determine vessel dimensions without the need for magnification calibration or optimal views. To validate this method in vivo, we compared results to intravascular ultrasound (IVUS) and coronary computed tomography angiography (CCTA) in a healthy porcine model. Coronary angiography was performed using Scanning-Beam Digital X-ray (SBDX), an inverse geometry fluoroscopy system that performs multiplane digital x-ray tomosynthesis in real time. From a single frame, 3D reconstruction of the arteries was performed by localizing the depth of vessel lumen edges. The 3D model was used to directly calculate length and to determine the best imaging plane to use for diameter measurements, where out-of-plane blur was minimized and the known pixel spacing was used to obtain absolute vessel diameter. End-diastolic length and diameter measurements were compared to measurements from CCTA and IVUS, respectively. For vessel segment lengths measuring 6 mm to 73 mm by CCTA, the SBDX length error was -0.49 ± 1.76 mm (SBDX - CCTA, mean ± 1 SD). For vessel diameters measuring 2.1 mm to 3.6 mm by IVUS, the SBDX diameter error was 0.07 ± 0.27 mm (SBDX - minimum IVUS diameter, mean ± 1 SD). The in vivo agreement between SBDX-based vessel sizing and gold standard techniques supports the feasibility of calibration-free coronary vessel sizing using inverse geometry x-ray fluoroscopy.

9.
Artículo en Inglés | MEDLINE | ID: mdl-25544948

RESUMEN

Proper sizing of interventional devices to match coronary vessel dimensions improves procedural efficiency and therapeutic outcomes. We have developed a method that uses an inverse geometry x-ray fluoroscopy system [scanning beam digital x-ray (SBDX)] to automatically determine vessel dimensions from angiograms without the need for magnification calibration or optimal views. For each frame period (1/15th of a second), SBDX acquires a sequence of narrow beam projections and performs digital tomosynthesis at multiple plane positions. A three-dimensional model of the vessel is reconstructed by localizing the depth of the vessel edges from the tomosynthesis images, and the model is used to calculate the length and diameter in units of millimeters. The in vivo algorithm performance was evaluated in a healthy porcine model by comparing end-diastolic length and diameter measurements from SBDX to coronary computed tomography angiography (CCTA) and intravascular ultrasound (IVUS), respectively. The length error was -0.49 ± 1.76 mm(SBDX- CCTA, mean ± 1 SD). The diameter error was 0.07 ± 0.27 mm (SBDX - minimum IVUS diameter, mean ± 1 SD). The in vivo agreement between SBDX-based vessel sizing and gold standard techniques supports the feasibility of calibration-free coronary vessel sizing using inverse geometry x-ray fluoroscopy.

10.
Med Phys ; 41(7): 071914, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24989392

RESUMEN

PURPOSE: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. METHODS: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. RESULTS: Forin vivo studies, the 500 mA FBP maps gave -88.4%, -96.0%, -76.7%, and -65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring -94.7%, -81.6%, -84.0%, and -72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, -11.8%, and -3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was -9.7%, 8.8%, -3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937.9% for the 500 mA FBP, 25 mA SIR, and 25 mA FBP, respectively. In numerical simulations, SIR mitigated streak artifacts in the low dose data and yielded flow maps with mean error <7% and standard deviation <9% of mean, for 30 × 30 pixel ROIs (12.9 × 12.9 mm(2)). In comparison, low dose FBP flow errors were -38% to +258%, and standard deviation was 6%-93%. Additionally, low dose SIR achieved 4.6 times improvement in flow map CNR(2) per unit input dose compared to low dose FBP. CONCLUSIONS: SIR reconstruction can reduce image noise and mitigate streaking artifacts caused by photon starvation in dynamic CT myocardial perfusion data sets acquired at low dose (low tube current), and improve perfusion map quality in comparison to FBP reconstruction at the same dose.


Asunto(s)
Imagen de Perfusión Miocárdica/métodos , Tomografía de Emisión de Positrones/métodos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Amoníaco , Animales , Artefactos , Simulación por Computador , Oclusión Coronaria/diagnóstico por imagen , Modelos Biológicos , Modelos Estadísticos , Imagen de Perfusión Miocárdica/instrumentación , Radioisótopos de Nitrógeno , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Radiofármacos , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
11.
Proc SPIE Int Soc Opt Eng ; 86692013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24392204

RESUMEN

Scanning Beam Digital X-ray (SBDX) is a low-dose inverse geometry fluoroscopic system for cardiac interventional procedures. The system performs x-ray tomosynthesis at multiple planes in each frame period and combines the tomosynthetic images into a projection-like composite image for fluoroscopic display. We present a novel method of stereoscopic imaging using SBDX, in which two slightly offset projection-like images are reconstructed from the same scan data by utilizing raw data from two different detector regions. To confirm the accuracy of the 3D information contained in the stereoscopic projections, a phantom of known geometry containing high contrast steel spheres was imaged, and the spheres were localized in 3D using a previously described stereoscopic localization method. After registering the localized spheres to the phantom geometry, the 3D residual RMS errors were between 0.81 and 1.93 mm, depending on the stereoscopic geometry. To demonstrate visualization capabilities, a cardiac RF ablation catheter was imaged with the tip oriented towards the detector. When viewed as a stereoscopic red/cyan anaglyph, the true orientation (towards vs. away) could be resolved, whereas the device orientation was ambiguous in conventional 2D projection images. This stereoscopic imaging method could be implemented in real time to provide live 3D visualization and device guidance for cardiovascular interventions using a single gantry and data acquired through normal, low-dose SBDX imaging.

12.
Med Phys ; 40(1): 011904, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23298095

RESUMEN

PURPOSE: This study describes a HighlY constrained backPRojection (HYPR) image processing method for the reduction of image noise in low tube current time-resolved CT myocardial perfusion scans. The effect of this method on myocardial time-attenuation curve noise and fidelity is evaluated in an animal model, using varying levels of tube current. METHODS: CT perfusion scans of four healthy pigs (42-59 kg) were acquired at 500, 250, 100, 50, 25, and 10 mA on a 64-slice scanner (4 cm axial coverage, 120 kV, 0.4 s∕rotation, 50 s scan duration). For each scan a sequence of ECG-gated images centered on 75% R-R was reconstructed using short-scan filtered back projection (FBP). HYPR processing was applied to the scans acquired at less than 500 mA using parameters designed to maintain the voxel noise level in the 500-mA FBP images. The processing method generates a series of composite images by averaging over a sliding time window and then multiplies the composite images by weighting images to restore temporal fidelity to the image sequence. HYPR voxel noise relative to FBP noise was measured in AHA myocardial segment numbers 1, 5, 6, and 7 at each mA. To quantify the agreement between HYPR and FBP time-attenuation curves (TACs), Bland-Altman analysis was performed on TACs measured in full myocardial segments. The relative degree of TAC fluctuation in smaller subvolumes was quantified by calculating the root mean square deviation of a TAC about the gamma variate curve fit to the TAC data. RESULTS: HYPR image sequences were produced using 2, 7, and 20 beat composite windows for the 250, 100, and 50 mA scans, respectively. At 25 and 10 mA, all available beats were used in the composite (41-60; average 50). A 7-voxel-wide 3D cubic filter kernel was used to form weighting images. The average ratio of HYPR voxel noise to 500-mA FBP voxel noise was 1.06, 1.10, 0.97, 1.11, and 2.15 for HYPR scans at 250, 100, 50, 25, and 10 mA. The average limits-of-agreement between HYPR and FBP TAC values measured 0.02+∕-0.91, 0.04+∕-1.92, 0.19+∕-1.59, 1.13+∕-4.22, and 1.07+∕-6.37 HU (mean difference +∕-1.96 SD). The HYPR image subvolume that yielded a fixed level of TAC fluctuations was smaller, on average, than the FBP subvolume determined at the same mA. CONCLUSIONS: HYPR processing is a feasible method for generating low noise myocardial perfusion data from a low-mA time-resolved CT myocardial perfusion scan. The method is applicable to current clinical scanners and uses conventional image reconstructions as input data.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Estudios de Factibilidad , Relación Señal-Ruido , Porcinos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA