Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7909): 310-314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344985

RESUMEN

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Asunto(s)
Envejecimiento , Amiloide , Amiloidosis , Encéfalo , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Encéfalo/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Placa Amiloide/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo
2.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743596

RESUMEN

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

3.
Brain ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527854

RESUMEN

Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins (proximity extension-based (PEA) immunoassays) in a deeply-phenotyped mixed-memory clinic cohort (n=502, mean age (sd) = 64.1 [8.7] years, 181 female [35.4%]), including patients with Alzheimer's disease (AD, n=213), dementia with Lewy bodies (DLB, n=50) and frontotemporal dementia (FTD, n=93), and controls (n=146). Validation was assessed in independent cohorts (n=99 PEA platform, n=198, MRM-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P=1.65e-08), ZCWPW1-PILRB (rs1476679, P=2.73e-32), CTSH-CTSH (rs3784539, P=2.88e-24) and HESX1-RETN (rs186108507, P=8.39e-08), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90e-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for frontotemporal dementia, either for the total sample as for analyses performed within FTD only. pQTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38253362

RESUMEN

BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.

5.
Mov Disord ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847384

RESUMEN

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
Brain ; 146(1): 307-320, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35136978

RESUMEN

Three subtypes of distinct pathological proteins accumulate throughout multiple brain regions and shape the heterogeneous clinical presentation of frontotemporal lobar degeneration (FTLD). Besides the main pathological subtypes, co-occurring pathologies are common in FTLD brain donors. The objective of this study was to investigate how the location and burden of (co-)pathology correlate to early psychiatric and behavioural symptoms of FTLD. Eighty-seven brain donors from The Netherlands Brain Bank cohort (2008-2017) diagnosed with FTLD were included: 46 FTLD-TAR DNA-binding protein 43 (FTLD-TDP), 34 FTLD-tau, and seven FTLD-fused-in-sarcoma (FTLD-FUS). Post-mortem brain tissue was dissected into 20 standard regions and stained for phosphorylated TDP-43, phosphorylated tau, FUS, amyloid-ß, and α-synuclein. The burden of each pathological protein in each brain region was assessed with a semi-quantitative score. Clinical records were reviewed for early psychiatric and behavioural symptoms. Whole-brain clinico-pathological partial correlations were calculated (local false discovery rate threshold = 0.01). Elaborating on the results, we validated one finding using a quantitative assessment of TDP-43 pathology in the granular layer of the hippocampus in FTLD-TDP brain donors with (n = 15) and without (n = 15) hallucinations. In subcortical regions, the presence of psychiatric symptoms showed positive correlations with increased hippocampal pathology burden: hallucinations with TDP-43 in the granular layer (R = 0.33), mania with TDP-43 in CA1 (R = 0.35), depression with TDP-43 in CA3 and with parahippocampal tau (R = 0.30 and R = 0.23), and delusions with CA3 tau (R = 0.26) and subicular amyloid-ß (R = 0.25). Behavioural disinhibition showed positive correlations with tau burden in the thalamus (R = 0.29) and with both TDP-43 and amyloid-ß burden in the subthalamus (R = 0.23 and R = 0.24). In the brainstem, the presence of α-synuclein co-pathology in the substantia nigra correlated with disinhibition (R = 0.24), tau pathology in the substantia nigra correlated with depression (R = 0.25) and in the locus coeruleus with both depression and perseverative/compulsive behaviour (R = 0.26 and R = 0.32). The quantitative assessment of TDP-43 in the granular layer validated the higher burden of TDP-43 pathology in brain donors with hallucinations compared to those without hallucinations (P = 0.007). Our results show that psychiatric symptoms of FTLD are linked to subcortical pathology burden in the hippocampus, and hallucinations are linked to a higher burden of TDP-43 in the granular layer. Co-occurring non-FTLD pathologies in subcortical regions could contribute to configuring the clinical phenotype of FTLD.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/patología , alfa-Sinucleína/metabolismo , Enfermedad de Pick/patología , Degeneración Lobar Frontotemporal/patología , Encéfalo/patología , Alucinaciones , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas tau/metabolismo
7.
Brain ; 146(11): 4495-4507, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37348871

RESUMEN

Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q < 0.05). The most strongly upregulated proteins (fold change >1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P < 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Metaloproteinasa 10 de la Matriz , Proteómica , Proteoma , Biomarcadores , Péptidos beta-Amiloides
8.
Brain ; 146(1): 321-336, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35188955

RESUMEN

Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.


Asunto(s)
Conectoma , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Transcriptoma , Encéfalo/patología , Enfermedad de Pick/patología , Atrofia/patología , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
9.
Brain ; 146(5): 2120-2131, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458975

RESUMEN

While frontotemporal dementia has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with ageing. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between 19 and 30 years of age. Structural brain differences and improved performance on some cognitive tests were found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26 years. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia-causing genetic mutations. These results have implications for the design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes that occur during the neurodevelopmental period.


Asunto(s)
Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Pick , Humanos , Adulto Joven , Adulto , Demencia Frontotemporal/genética , Progranulinas/genética , Encéfalo , Mutación , Proteína C9orf72/genética , Proteínas tau/genética
10.
Alzheimers Dement ; 20(5): 3525-3542, 2024 May.
Artículo en Italiano | MEDLINE | ID: mdl-38623902

RESUMEN

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Asunto(s)
Proteína C9orf72 , Circulación Cerebrovascular , Demencia Frontotemporal , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/genética , Proteína C9orf72/genética , Proteínas tau/genética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Progranulinas/genética , Biomarcadores , Progresión de la Enfermedad , Encéfalo/diagnóstico por imagen , Heterocigoto , Mutación , Anciano , Marcadores de Spin , Adulto
11.
Neurobiol Dis ; 179: 106068, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898614

RESUMEN

BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Acetilcolina , Dopamina , Serotonina , Mutación , Imagen por Resonancia Magnética/métodos , Proteínas tau/genética
12.
Hum Brain Mapp ; 44(7): 2684-2700, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36895129

RESUMEN

Recent studies have reported early cerebellar and subcortical impact in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72). However, the cerebello-subcortical circuitry in FTD has been understudied despite its essential role in cognition and behaviors related to FTD symptomatology. The present study aims to investigate the association between cerebellar and subcortical atrophy, and neuropsychiatric symptoms across genetic mutations. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative including mutation carriers and noncarrier first-degree relatives of known symptomatic carriers. Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed, and partial least squares analyses (PLS) were used to link morphometry and behavior. In presymptomatic C9orf72 expansion carriers, thalamic atrophy was found compared to noncarriers, suggesting the importance of this structure in FTD prodromes. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to neuropsychiatric symptoms, with significant overlap in brain/behavior patterns, but also specificity for each genetic mutation group. The largest differences were in the cerebellar atrophy (larger extent in C9orf72 expansion group) and more prominent amygdalar volume reduction in the MAPT group. Brain scores in the C9orf72 expansion carriers and MAPT carriers demonstrated covariation patterns concordant with atrophy patterns detectable up to 20 years before expected symptom onset. Overall, these results demonstrated the important role of the subcortical structures in genetic FTD symptom expression, particularly the cerebellum in C9orf72 and the amygdala in MAPT carriers.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Imagen por Resonancia Magnética , Cerebelo , Atrofia
13.
Ann Neurol ; 92(4): 637-649, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35872640

RESUMEN

OBJECTIVES: To identify the clinical characteristics of the subgroup of benign progressive supranuclear palsy with particularly long disease duration; to define neuropathological determinants underlying variability in disease duration in progressive supranuclear palsy. METHODS: Clinical and pathological features were compared among 186 autopsy-confirmed cases with progressive supranuclear palsy with ≥10 years and shorter survival times. RESULTS: The 45 cases (24.2%) had a disease duration of ≥10 years. The absence of ocular motor abnormalities within the first 3 years from disease onset was the only significant independent clinical predictor of longer survival. Histopathologically, the neurodegeneration parameters in each survival group were paralleled anatomically by the distribution of neuronal cytoplasmic inclusions, whereas the tufted astrocytes displayed anatomically an opposite severity pattern. Most interestingly, we found significantly less coiled bodies in those who survive longer, in contrast to patients with less favorable course. INTERPRETATION: A considerable proportion of patients had a more "benign" disease course with ≥10 years survival. They had a distinct pattern and evolution of core symptoms compared to patients with short survival. The inverted anatomical patterns of astrocytic tau distribution suggest distinct implications of these cell types in trans-cellular propagation. The tempo of disease progression appeared to be determined mostly by oligodendroglial tau, where the high degree of oligodendroglial tau pathology might affect neuronal integrity and function on top of neuronal tau pathology. The relative contribution of glial tau should be further explored in cellular and animal models. ANN NEUROL 2022;92:637-649.


Asunto(s)
Parálisis Supranuclear Progresiva , Astrocitos/metabolismo , Autopsia , Progresión de la Enfermedad , Humanos , Neuronas/metabolismo , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo
14.
Ann Neurol ; 91(1): 33-47, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743360

RESUMEN

OBJECTIVE: Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the likely most treatment-relevant stage within the presymptomatic phase: the conversion stage. METHODS: We longitudinally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-negative within-family controls. RESULTS: In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates. INTERPRETATION: Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD. ANN NEUROL 2022;91:33-47.


Asunto(s)
Biomarcadores/sangre , Demencia Frontotemporal/sangre , Proteínas de Neurofilamentos/sangre , Anciano , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
15.
J Neurol Neurosurg Psychiatry ; 94(5): 357-368, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36627201

RESUMEN

BACKGROUND: Current clinical rating scales in frontotemporal dementia (FTD) often do not incorporate neuropsychiatric features and may therefore inadequately measure disease stage. METHODS: 832 participants from the Genetic FTD Initiative (GENFI) were recruited: 522 mutation carriers and 310 mutation-negative controls. The standardised GENFI clinical questionnaire assessed the frequency and severity of 14 neuropsychiatric symptoms: visual, auditory, and tactile hallucinations, delusions, depression, anxiety, irritability/lability, agitation/aggression, euphoria/elation, aberrant motor behaviour, hypersexuality, hyperreligiosity, impaired sleep, and altered sense of humour. A principal component analysis (PCA) was performed to identify key groupings of neuropsychiatric and behavioural items in order to create a new neuropsychiatric module that could be used as an addition to the Clinical Dementia Rating (CDR) plus National Alzheimer's Coordinating Center Behaviour and Language Domains (NACC FTLD) rating scale. RESULTS: Overall, 46.4% of mutation carriers had neuropsychiatric symptoms (51.6% C9orf72, 40.8% GRN, 46.6% MAPT) compared with 24.5% of controls. Anxiety and depression were the most common in all genetic groups but fluctuated longitudinally and loaded separately in the PCA. Hallucinations and delusions loaded together, with the remaining neuropsychiatric symptoms loading with the core behavioural features of FTD. These results suggest using a single 'psychosis' neuropsychiatric module consisting of hallucinations and delusions. Adding this to the CDR plus NACC FTLD, called the CDR plus NACC FTLD-N, leads to a number of participants being scored more severely, including those who were previously considered asymptomatic now being scored as prodromal. CONCLUSIONS: Neuropsychiatric symptoms occur in mutation carriers at all disease stages across all three genetic groups. However, only psychosis features provided additional staging benefit to the CDR plus NACC FTLD. Inclusion of these features brings us closer to optimising the rating scale for use in trials.


Asunto(s)
Demencia Frontotemporal , Trastornos Psicóticos , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Alucinaciones/genética , Pruebas de Estado Mental y Demencia , Ansiedad
16.
Eur J Nucl Med Mol Imaging ; 50(5): 1371-1383, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36513817

RESUMEN

PURPOSE: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aß-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aß-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones , Mutación , Atrofia
17.
Brain ; 145(5): 1805-1817, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34633446

RESUMEN

Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.


Asunto(s)
Demencia Frontotemporal , Biomarcadores , Proteína C9orf72/genética , Complemento C1q , Estudios Transversales , Progresión de la Enfermedad , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Proteína Ácida Fibrilar de la Glía , Humanos , Estudios Longitudinales , Mutación , Proteínas tau/genética
18.
Alzheimers Dement ; 19(5): 1947-1962, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36377606

RESUMEN

INTRODUCTION: We tested whether changes in functional networks predict cognitive decline and conversion from the presymptomatic prodrome to symptomatic disease in familial frontotemporal dementia (FTD). METHODS: For hypothesis generation, 36 participants with behavioral variant FTD (bvFTD) and 34 controls were recruited from one site. For hypothesis testing, we studied 198 symptomatic FTD mutation carriers, 341 presymptomatic mutation carriers, and 329 family members without mutations. We compared functional network dynamics between groups, with clinical severity and with longitudinal clinical progression. RESULTS: We identified a characteristic pattern of dynamic network changes in FTD, which correlated with neuropsychological impairment. Among presymptomatic mutation carriers, this pattern of network dynamics was found to a greater extent in those who subsequently converted to the symptomatic phase. Baseline network dynamic changes predicted future cognitive decline in symptomatic participants and older presymptomatic participants. DISCUSSION: Dynamic network abnormalities in FTD predict cognitive decline and symptomatic conversion. HIGHLIGHTS: We investigated brain network predictors of dementia symptom onset Frontotemporal dementia results in characteristic dynamic network patterns Alterations in network dynamics are associated with neuropsychological impairment Network dynamic changes predict symptomatic conversion in presymptomatic carriers Network dynamic changes are associated with longitudinal cognitive decline.


Asunto(s)
Disfunción Cognitiva , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Mutación/genética , Encéfalo , Disfunción Cognitiva/genética , Imagen por Resonancia Magnética
19.
Neurobiol Dis ; 172: 105813, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820647

RESUMEN

AIMS: Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. METHODS: APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. RESULTS: APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. CONCLUSION: APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Apolipoproteína L1/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Proteínas tau/metabolismo
20.
Hum Brain Mapp ; 43(6): 1821-1835, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35118777

RESUMEN

Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.


Asunto(s)
Demencia Frontotemporal , Estudios Transversales , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/psicología , Heterocigoto , Humanos , Lenguaje , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA