Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(5): e22309, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35471581

RESUMEN

RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p < .05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.


Asunto(s)
Proteómica , Pez Cebra , Animales , Ceguera/metabolismo , Humanos , Fagocitosis , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinoides/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
2.
J Inherit Metab Dis ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455357

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS). Targeted analysis of NGMS data from cerebrospinal fluid (CSF) showed a moderate increase of aspartic acid, glutaric acid, glycolic acid, 4-guanidinobutanoic acid, and 2-hydroxyglutaric acid, and prominent elevations of GHB and 4,5-dihydroxyhexanoic acid (4,5-DHHA) in SSADHD samples. Remarkably, the intensities of 4,5-DHHA and GHB showed a significant positive correlation in control CSF, but not in patient CSF. In an established zebrafish epilepsy model, 4,5-DHHA showed increased mobility that may reflect limited epileptogenesis. Using untargeted metabolomics, we identified 12 features in CSF with high biomarker potential. These had comparable increased fold changes as GHB and 4,5-DHHA. For 10 of these features, a similar increase was found in plasma, urine and/or mouse brain tissue for SSADHD compared to controls. One of these was identified as the novel biomarker 4,5-dihydroxyheptanoic acid. The intensities of selected features in plasma and urine of SSADHD patients positively correlated with the clinical severity score of epilepsy and psychiatric symptoms of those patients, and also showed a high mutual correlation. Our findings provide new insights into the (neuro)metabolic disturbances in SSADHD and give leads for further research concerning SSADHD pathophysiology.

3.
Dev Dyn ; 251(8): 1357-1367, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35275424

RESUMEN

BACKGROUND: Cohesinopathies is a term that refers to/covers rare genetic diseases caused by mutations in the cohesin complex proteins. The cohesin complex is a multiprotein complex that facilitates different aspects of cell division, gene transcription, DNA damage repair, and chromosome architecture. Shugoshin proteins prevent the cohesin complex from premature dissociation from chromatids during cell division. Patients with a homozygous missense mutation in SGO1, which encodes for Shugoshin1, have problems with normal pacing of the heart and gut. RESULTS: To study the role of shugoshin during embryo development, we mutated the zebrafish sgo1 gene. Homozygous sgo1 mutant embryos display various phenotypes related to different organs, including a reduced heart rate accompanied by reduced cardiac function. In addition, sgo1 mutants are vision-impaired as a consequence of structurally defective and partially non-functional photoreceptor cells. Furthermore, the sgo1 mutants display reduced food intake and early lethality. CONCLUSION: We have generated a zebrafish model of Sgo1 that showed its importance during organ development and function.


Asunto(s)
Centrómero , Pez Cebra , Animales , Proteínas de Ciclo Celular/fisiología , Centrómero/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Pez Cebra/genética , Cohesinas
4.
Hum Mol Genet ; 29(11): 1882-1899, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31998945

RESUMEN

USH2A variants are the most common cause of Usher syndrome type 2, characterized by congenital sensorineural hearing loss and retinitis pigmentosa (RP), and also contribute to autosomal recessive non-syndromic RP. Several treatment strategies are under development; however, sensitive clinical trial endpoint metrics to determine therapeutic efficacy have not been identified. In the present study, we have performed longitudinal retrospective examination of the retinal and auditory symptoms in (i) 56 biallelic molecularly confirmed USH2A patients and (ii) ush2a mutant zebrafish to identify metrics for the evaluation of future clinical trials and rapid preclinical screening studies. The patient cohort showed a statistically significant correlation between age and both rate of constriction for the ellipsoid zone length and hyperautofluorescent outer retinal ring area. Visual acuity and pure tone audiograms are not suitable outcome measures. Retinal examination of the novel ush2au507 zebrafish mutant revealed a slowly progressive degeneration of predominantly rods, accompanied by rhodopsin and blue cone opsin mislocalization from 6 to 12 months of age with lysosome-like structures observed in the photoreceptors. This was further evaluated in the ush2armc zebrafish model, which revealed similar changes in photopigment mislocalization with elevated autophagy levels at 6 days post fertilization, indicating a more severe genotype-phenotype correlation and providing evidence of new insights into the pathophysiology underlying USH2A-retinal disease.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Retina/fisiopatología , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Anciano , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Opsinas/genética , Retina/diagnóstico por imagen , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/fisiopatología , Rodopsina/genética , Opsinas de Bastones/genética , Síndromes de Usher/diagnóstico por imagen , Síndromes de Usher/patología , Agudeza Visual/genética , Agudeza Visual/fisiología , Adulto Joven , Pez Cebra/genética
5.
Mol Ther ; 29(8): 2441-2455, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33895329

RESUMEN

Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Mutación , Oligonucleótidos Antisentido/administración & dosificación , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Exones , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Moleculares , Oligonucleótidos Antisentido/farmacología , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362125

RESUMEN

Non-canonical splice site variants are increasingly recognized as a relevant cause of the USH2A-associated diseases, non-syndromic autosomal recessive retinitis pigmentosa and Usher syndrome type 2. Many non-canonical splice site variants have been reported in public databases, but an effect on pre-mRNA splicing has only been functionally verified for a subset of these variants. In this study, we aimed to extend the knowledge regarding splicing events by assessing a selected set of USH2A non-canonical splice site variants and to study their potential pathogenicity. Eleven non-canonical splice site variants were selected based on four splice prediction tools. Ten different USH2A constructs were generated and minigene splice assays were performed in HEK293T cells. An effect on pre-mRNA splicing was observed for all 11 variants. Various events, such as exon skipping, dual exon skipping and partial exon skipping were observed and eight of the tested variants had a full effect on splicing as no conventionally spliced mRNA was detected. We demonstrated that non-canonical splice site variants in USH2A are an important contributor to the genetic etiology of the associated disorders. This type of variant generally should not be neglected in genetic screening, both in USH2A-associated disease as well as other hereditary disorders. In addition, cases with these specific variants may now receive a conclusive genetic diagnosis.


Asunto(s)
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células HEK293 , Precursores del ARN , Proteínas de la Matriz Extracelular/genética , Mutación , Sitios de Empalme de ARN/genética
7.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29961571

RESUMEN

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Asunto(s)
Moléculas de Adhesión Celular/genética , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , Audición/genética , Animales , Adhesión Celular/genética , Cóclea/patología , Sordera/genética , Epitelio/patología , Femenino , Homocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/patología , Ganglio Espiral de la Cóclea/patología
8.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502338

RESUMEN

CRISPR-Cas9-based genome-editing is a highly efficient and cost-effective method to generate zebrafish loss-of-function alleles. However, introducing patient-specific variants into the zebrafish genome with CRISPR-Cas9 remains challenging. Targeting options can be limited by the predetermined genetic context, and the efficiency of the homology-directed DNA repair pathway is relatively low. Here, we illustrate our efficient approach to develop knock-in zebrafish models using two previously variants associated with hereditary sensory deficits. We employ sgRNA-Cas9 ribonucleoprotein (RNP) complexes that are micro-injected into the first cell of fertilized zebrafish eggs together with an asymmetric, single-stranded DNA template containing the variant of interest. The introduction of knock-in events was confirmed by massive parallel sequencing of genomic DNA extracted from a pool of injected embryos. Simultaneous morpholino-induced blocking of a key component of the non-homologous end joining DNA repair pathway, Ku70, improved the knock-in efficiency for one of the targets. Our use of RNP complexes provides an improved knock-in efficiency as compared to previously published studies. Correct knock-in events were identified in 3-8% of alleles, and 30-45% of injected animals had the target variant in their germline. The detailed technical and procedural insights described here provide a valuable framework for the efficient development of knock-in zebrafish models.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Técnicas de Sustitución del Gen/métodos , Enfermedades Genéticas Congénitas/genética , Ingeniería Genética/métodos , Proteínas de Pez Cebra/genética , Animales , Mutagénesis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
9.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502064

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Retinitis Pigmentosa/genética , Proteínas de Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Exones , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Terapia Genética/métodos , Fenotipo , Dominios Proteicos , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203967

RESUMEN

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Asunto(s)
Análisis Costo-Beneficio , Exones/genética , Proteínas de la Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sitios de Empalme de ARN/genética , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN , Síndromes de Usher/genética , Secuencia de Bases , Variaciones en el Número de Copia de ADN/genética , Eliminación de Gen , Humanos , Polimorfismo de Nucleótido Simple/genética , Retinitis Pigmentosa/economía , Síndromes de Usher/economía
11.
Hum Mol Genet ; 27(4): 614-624, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29272404

RESUMEN

Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is associated with different groups of genes, including those encoding proteins involved in centriole and cilium biogenesis. Exome sequencing revealed a homozygous nonsense mutation [c.304_305delGA (p. D102*)] in POC5, encoding the Proteome Of Centriole 5 protein, in a patient with RP, short stature, microcephaly and recurrent glomerulonephritis. The POC5 gene is ubiquitously expressed, and immunohistochemistry revealed a distinct POC5 localization at the photoreceptor connecting cilium. Morpholino-oligonucleotide-induced knockdown of poc5 translation in zebrafish resulted in decreased length of photoreceptor outer segments and a decreased visual motor response, a measurement of retinal function. These phenotypes could be rescued by wild-type human POC5 mRNA. These findings demonstrate that Poc5 is important for normal retinal development and function. Altogether, this study presents POC5 as a novel gene involved autosomal recessively inherited RP, and strengthens the hypothesis that mutations in centriolar proteins are important cause of retinal dystrophies.


Asunto(s)
Proteínas Portadoras/genética , Exoma/genética , Retinitis Pigmentosa/genética , Adulto , Femenino , Humanos , Mutación/genética , Adulto Joven
12.
Pflugers Arch ; 471(6): 845-860, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30417250

RESUMEN

Solute carrier family 41 member A1 (SLC41A1) has been suggested to mediate magnesium (Mg2+) transport by several in vitro studies. However, the physiological function of SLC41A1 remains to be elucidated. In this study, cellular Mg2+ transport assays combined with zebrafish slc41a1 knockdown experiments were performed to disclose SLC41A1 function and its physiological relevance. The gene slc41a1 is ubiquitously expressed in zebrafish tissues and is regulated by water and dietary Mg2+ availability. Knockdown of slc41a1 in zebrafish larvae grown in a Mg2+-free medium resulted in a unique phenotype characterized by a decrease in zebrafish Mg content. This decrease shows that SLC41A1 is required to maintain Mg2+ balance and its dysfunction results in renal Mg2+ wasting in zebrafish larvae. Importantly, the Mg content of the larvae is rescued when mouse SLC41A1 is expressed in slc41a1-knockdown zebrafish. Conversely, expression of mammalian SLC41A1-p.Asp262Ala, harboring a mutation in the ion-conducting SLC41A1 pore, did not reverse the renal Mg2+ wasting. 25Mg2+ transport assays in human embryonic kidney 293 (HEK293) cells overexpressing SLC41A1 demonstrated that SLC41A1 mediates cellular Mg2+ extrusion independently of sodium (Na+). In contrast, SLC41A1-p.Asp262Ala expressing HEK293 cells displayed similar Mg2+ extrusion activities than control (mock) cells. In polarized Madin-Darby canine kidney cells, SLC41A1 localized to the basolateral cell membrane. Our results demonstrate that SLC41A1 facilitates renal Mg2+ reabsorption in the zebrafish model. Furthermore, our data suggest that SLC41A1 mediates both Mg2+ uptake and extrusion.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Células HEK293 , Homeostasis , Humanos , Larva/metabolismo , Ratones , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Exp Eye Res ; 173: 148-159, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777677

RESUMEN

Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2armc1: c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2ab1245: c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2armc1, but presence of the ectodomain of usherin at the periciliary membrane of ush2ab1245-derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a- and b-wave amplitudes in ush2armc1 as well as ush2ab1245 larvae as compared to strain- and age-matched wild-type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early-onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A-associated RP and a unique opportunity to evaluate future therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Degeneración Retiniana/genética , Síndromes de Usher/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Apoptosis , Electrorretinografía , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Técnicas de Genotipaje , Proteínas de la Membrana/metabolismo , Microscopía Inmunoelectrónica , Mutación , Retina/fisiopatología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Receptor de Retrovirus Xenotrópico y Politrópico , Proteínas de Pez Cebra/metabolismo
14.
J Med Genet ; 54(9): 624-632, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28442542

RESUMEN

BACKGROUND: Recent findings suggesting that Abelson helper integration site 1 (AHI1) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). METHODS: Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. RESULTS: In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1, with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. CONCLUSIONS: This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mutación Missense , Retinitis Pigmentosa/genética , Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras del Transporte Vesicular , Adulto , Cerebelo/anomalías , Anomalías del Ojo/genética , Femenino , Humanos , Enfermedades Renales Quísticas/genética , Masculino , Persona de Mediana Edad , Linaje , Dominios Proteicos/genética , Retina/anomalías
15.
PLoS Genet ; 11(10): e1005574, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26485514

RESUMEN

Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function. Ninein-like protein (NINL) is known to associate with this motor complex and is an important interaction partner of the ciliopathy-associated proteins lebercilin, USH2A and CC2D2A. Here, we scrutinize the function of NINL with combined proteomic and zebrafish in vivo approaches. We identify Double Zinc Ribbon and Ankyrin Repeat domains 1 (DZANK1) as a novel interaction partner of NINL and show that loss of Ninl, Dzank1 or both synergistically leads to dysmorphic photoreceptor outer segments, accumulation of trans-Golgi-derived vesicles and mislocalization of Rhodopsin and Ush2a in zebrafish. In addition, retrograde melanosome transport is severely impaired in zebrafish lacking Ninl or Dzank1. We further demonstrate that NINL and DZANK1 are essential for intracellular dynein-based transport by associating with complementary subunits of the cytoplasmic dynein 1 motor complex, thus shedding light on the structure and stoichiometry of this important motor complex. Altogether, our results support a model in which the NINL-DZANK1 protein module is involved in the proper assembly and folding of the cytoplasmic dynein 1 motor complex in photoreceptor cells, a process essential for outer segment formation and function.


Asunto(s)
Proteínas Portadoras/genética , Dineínas/genética , Larva/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Células Fotorreceptoras de Vertebrados , Retina/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Animales , Transporte Biológico/genética , Cilios/genética , Células HEK293 , Humanos , Larva/crecimiento & desarrollo , Neurogénesis/genética , Proteómica , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
16.
PLoS Genet ; 11(10): e1005575, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26485645

RESUMEN

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.


Asunto(s)
Cerebelo/anomalías , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Oxigenasas de Función Mixta/genética , Proteínas Nucleares/metabolismo , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Retina/anomalías , Proteínas de Unión al GTP rab/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Cerebelo/metabolismo , Cerebelo/patología , Cilios/genética , Cilios/metabolismo , Cilios/patología , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Proteínas del Citoesqueleto , Encefalocele/metabolismo , Encefalocele/patología , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Proteínas Asociadas a Microtúbulos/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Proteínas Nucleares/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Transporte de Proteínas/genética , Proteínas/metabolismo , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa , Transducción de Señal , Pez Cebra , Proteínas de Unión al GTP rab/metabolismo
17.
Am J Hum Genet ; 95(2): 131-42, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25018096

RESUMEN

Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas del Ojo/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Secuencia de Aminoácidos , Animales , Cuerpos Basales , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Exoma/genética , Proteínas del Ojo/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Datos de Secuencia Molecular , Morfolinos/genética , Mutación Missense , Países Bajos , Cilio Conector de los Fotorreceptores/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Análisis de Secuencia de ADN , Turquía , Trastornos de la Visión/genética , Pez Cebra
18.
PLoS Genet ; 10(4): e1004267, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699222

RESUMEN

Intellectual disability and seizures are frequently associated with hypomagnesemia and have an important genetic component. However, to find the genetic origin of intellectual disability and seizures often remains challenging because of considerable genetic heterogeneity and clinical variability. In this study, we have identified new mutations in CNNM2 in five families suffering from mental retardation, seizures, and hypomagnesemia. For the first time, a recessive mode of inheritance of CNNM2 mutations was observed. Importantly, patients with recessive CNNM2 mutations suffer from brain malformations and severe intellectual disability. Additionally, three patients with moderate mental disability were shown to carry de novo heterozygous missense mutations in the CNNM2 gene. To elucidate the physiological role of CNNM2 and explain the pathomechanisms of disease, we studied CNNM2 function combining in vitro activity assays and the zebrafish knockdown model system. Using stable Mg(2+) isotopes, we demonstrated that CNNM2 increases cellular Mg2+ uptake in HEK293 cells and that this process occurs through regulation of the Mg(2+)-permeable cation channel TRPM7. In contrast, cells expressing mutated CNNM2 proteins did not show increased Mg(2+) uptake. Knockdown of cnnm2 isoforms in zebrafish resulted in disturbed brain development including neurodevelopmental impairments such as increased embryonic spontaneous contractions and weak touch-evoked escape behaviour, and reduced body Mg content, indicative of impaired renal Mg(2+) absorption. These phenotypes were rescued by injection of mammalian wild-type Cnnm2 cRNA, whereas mammalian mutant Cnnm2 cRNA did not improve the zebrafish knockdown phenotypes. We therefore concluded that CNNM2 is fundamental for brain development, neurological functioning and Mg(2+) homeostasis. By establishing the loss-of-function zebrafish model for CNNM2 genetic disease, we provide a unique system for testing therapeutic drugs targeting CNNM2 and for monitoring their effects on the brain and kidney phenotype.


Asunto(s)
Encéfalo/metabolismo , Ciclinas/genética , Discapacidad Intelectual/genética , Magnesio/metabolismo , Mutación Missense/genética , Convulsiones/genética , Adolescente , Animales , Proteínas de Transporte de Catión , Línea Celular , Femenino , Células HEK293 , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/metabolismo , Riñón/metabolismo , Masculino , Fenotipo , Convulsiones/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Hum Genet ; 135(8): 919-921, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27245168

RESUMEN

Joubert Syndrome (JS) is an inherited ciliopathy associated with mutations in genes essential in primary cilium function. Whole exome sequencing in a multiplex consanguineous family from India revealed a KIAA0556 homozygous single base pair deletion mutation (c.4420del; p.Met1474Cysfs*11). Knockdown of the gene in zebrafish resulted in a ciliopathy phenotype, rescued by co-injection of wildtype cDNA. Affected siblings present a mild and classical form of Joubert syndrome allowing for further delineation of the JS associated genotypic spectrum.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Ciliopatías/genética , Codón sin Sentido/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas Asociadas a Microtúbulos/genética , Retina/anomalías , Anomalías Múltiples/fisiopatología , Adulto , Animales , Cerebelo/fisiopatología , Niño , Preescolar , Cilios/efectos de los fármacos , Cilios/patología , Ciliopatías/fisiopatología , ADN Complementario/administración & dosificación , Modelos Animales de Enfermedad , Exoma/genética , Anomalías del Ojo/fisiopatología , Femenino , Técnicas de Silenciamiento del Gen , Homocigoto , Humanos , Enfermedades Renales Quísticas/fisiopatología , Masculino , Linaje , Fenotipo , Retina/fisiopatología , Pez Cebra/genética
20.
Ophthalmology ; 123(5): 1151-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26927203

RESUMEN

PURPOSE: USH2A mutations are an important cause of retinitis pigmentosa (RP) with or without congenital sensorineural hearing impairment. We studied genotype-phenotype correlations and compared visual prognosis in Usher syndrome type IIa and nonsyndromic RP. DESIGN: Clinic-based, longitudinal, multicenter study. PARTICIPANTS: Consecutive patients with Usher syndrome type IIa (n = 152) and nonsyndromic RP (n = 73) resulting from USH2A mutations from ophthalmogenetic clinics in the Netherlands and Belgium. METHODS: Data on clinical characteristics, visual acuity, visual field measurements, retinal imaging, and electrophysiologic features were extracted from medical charts over a mean follow-up of 9 years. Cumulative lifetime risks of low vision and blindness were estimated using Kaplan-Meier survival analysis. MAIN OUTCOME MEASURES: Low vision and blindness. RESULTS: Participant groups had similar distributions of gender (48% vs. 45% males in Usher syndrome type IIa vs. nonsydromic RP; P = 0.8), ethnicity (97% vs. 99% European; P = 0.3), and median follow-up time (6.5 years vs. 3 years; P = 0.3). Usher syndrome type IIa patients demonstrated symptoms at a younger age (median age, 15 years vs. 25 years; P < 0.001), were diagnosed earlier (median age, 26 years vs. 36.5 years; P < 0.001), and became visually impaired 13 years earlier (median age, 41 years vs. 54 years; P < 0.001) based on VF and 18 years earlier based on VA (median age, 54 years vs. 72 years; P < 0.001) than nonsyndromic RP patients. The presence of 2 truncating mutations in USH2A was associated mostly with the syndromic phenotype, whereas other combinations were present in both groups. We found novel variants in Usher syndrome type IIa (25%) and nonsyndromic RP (19%): 29 missense mutations, 10 indels, 14 nonsense mutations, 9 frameshift mutations, and 5 splice-site mutations. CONCLUSIONS: Most patients with USH2A-associated RP have severe visual impairment by age 50. However, those with Usher syndrome type IIa have an earlier decline of visual function and a higher cumulative risk of visual impairment than those without nonsyndromic RP. Complete loss of function of the USH2A protein predisposes to Usher syndrome type IIa, but remnant protein function can lead to RP with or without hearing loss.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Agudeza Visual/fisiología , Adolescente , Adulto , Anciano , Ceguera/fisiopatología , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Retinitis Pigmentosa/fisiopatología , Síndromes de Usher/fisiopatología , Baja Visión/fisiopatología , Campos Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA