Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biofilm ; 7: 100206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975276

RESUMEN

It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.

2.
Biofilm ; 5: 100106, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36845825

RESUMEN

The presence of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) patients suffering from chronic lung infections contributes to the failure of antimicrobial therapy. Conventionally, the minimal inhibitory concentration (MIC) is determined to assess the antimicrobial susceptibility of a pathogen, however this parameter fails to predict success in treating biofilm-associated infections. In the present study we developed a high throughput method to determine the antimicrobial concentration required to prevent P. aeruginosa biofilm formation, using a synthetic cystic fibrosis sputum medium (SCFM2). Biofilms were grown in SCFM2 for 24 h in the presence of antibiotics (tobramycin, ciprofloxacin or colistin), whereafter biofilms were disrupted and a resazurin staining was used to quantify the number of surviving metabolically active cells. In parallel, the content of all wells was plated to determine the number of colony forming units (CFU). Biofilm preventing concentrations (BPCs) were compared to MICs and minimal bactericidal concentrations (MBCs) determined according to EUCAST guidelines. Correlations between the resazurin-derived fluorescence and CFU counts were assessed with Kendall's Tau Rank tests. A significant correlation between fluorescence and CFU counts was observed for 9 out of 10 strains investigated, suggesting the fluorometric assay is a reliable alternative to plating for most P. aeruginosa isolates to determine biofilm susceptibility in relevant conditions. For all isolates a clear difference between MICs and BPCs of all three antibiotics was observed, with the BPCs being consistently higher than the MICs. Additionally, the extent of this difference appeared to be antibiotic-dependent. Our findings suggest that this high throughput assay could be a valuable addition to evaluate the antimicrobial susceptibility in P. aeruginosa biofilms in the context of CF.

3.
Eur J Pharm Sci ; 190: 106567, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633341

RESUMEN

In vitro models of differentiated respiratory epithelium that allow high-throughput screening are an important tool to explore new therapeutics for chronic respiratory diseases. In the present study, we developed in vivo-like three-dimensional (3-D) models of bronchial epithelial cell lines that are commonly used to study chronic lung disease (16HBE14o-, CFBE41o- and CFBE41o- 6.2 WT-CFTR). To this end, cells were cultured on porous microcarrier beads in the rotating wall vessel (RWV) bioreactor, an optimized suspension culture method that allows higher throughput experimentation than other physiologically relevant models. Cell differentiation was compared to conventional two-dimensional (2-D) monolayer cultures and to the current gold standard in the respiratory field, i.e. air-liquid interface (ALI) cultures. Cellular differentiation was assessed in the three model systems by evaluating the expression and localization of markers that reflect the formation of tight junctions (zonula occludens 1), cell polarity (intercellular adhesion molecule 1 at the apical side and collagen IV expression at the basal cell side), multicellular complexity (acetylated α-tubulin for ciliated cells, CC10 for club cells, keratin-5 for basal cells) and mucus production (MUC5AC) through immunostaining and confocal laser scanning microscopy. Results were validated using Western Blot analysis. We found that tight junctions were expressed in 2-D monolayers, ALI cultures and 3-D models for all three cell lines. All tested bronchial epithelial cell lines showed polarization in ALI and 3-D cultures, but not in 2-D monolayers. Mucus secreting goblet-like cells were present in ALI and 3-D cultures of CFBE41o- and CFBE41o- 6.2 WT-CFTR cells, but not in 16HBE14o- cells. For all cell lines, there were no ciliated cells, basal cells, or club cells found in any of the model systems. In conclusion, we developed RWV-derived 3-D models of commonly used bronchial epithelial cell lines and showed that these models are a valuable alternative to ALI cultures, as they recapitulate similar key aspects of the in vivo parental tissue.

4.
Front Immunol ; 14: 1176044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168857

RESUMEN

Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.


Asunto(s)
Microbiota , Neumonía , Humanos , Interleucina-8 , FN-kappa B , Peróxido de Hidrógeno , Inflamación/patología , Células Epiteliales/patología , Pulmón/patología , Neumonía/patología , Bacterias , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
5.
Microbiol Spectr ; 11(6): e0044923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982625

RESUMEN

IMPORTANCE: People with cystic fibrosis (pwCF) often suffer from chronic lung infections with Pseudomonas aeruginosa. While antibiotics are still commonly used to treat P. aeruginosa infections, there is a high discordance between in vitro and in vivo antibiotic efficacy, which contributes to suboptimal antibiotic therapy. In the present study, we found that isolates from the same sputum sample had highly diverse antibiotic resistance profiles [based on the minimal inhibitory concentration (MIC)], which may explain the reported discrepancy between in vitro and in vivo antibiotic efficacy. Through systematic analysis, we report that pooling nine isolates per sputum sample significantly decreased intrasample diversity in MIC and influenced clinical interpretation of antibiotic susceptibility tests compared to single isolate testing. Hence, pooling of isolates may offer a solution to obtain a consistent MIC test result and could lead to optimizing antibiotic therapy in pwCF and other infectious diseases where diversity in antibiotic resistance is observed.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Fibrosis Quística/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
6.
Eur Respir Rev ; 30(161)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34526313

RESUMEN

Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Infecciones del Sistema Respiratorio , Antibacterianos/efectos adversos , Fibrosis Quística/diagnóstico , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/tratamiento farmacológico
7.
Artículo en Inglés | MEDLINE | ID: mdl-33042868

RESUMEN

Models to study host-pathogen interactions in vitro are an important tool for investigating the infectious disease process and evaluating the efficacy of antimicrobial compounds. In these models, the viability of mammalian cells is often determined using the lactate dehydrogenase (LDH) cytotoxicity assay. In the present study we evaluated whether bacteria could interfere with the LDH assay. As a model for host-pathogen interactions, we co-cultured lung epithelial cells with eight bacteria encountered in the lower respiratory tract. We show that LDH activity is affected by Pseudomonas aeruginosa, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Streptococcus pneumoniae, and that this depends on the density of the start inoculum and the duration of infection. Two different mechanisms were discovered through which bacteria interfered with LDH activity, i.e., acidification of the cell culture medium (by K. pneumoniae and S. pneumoniae) and protease production (by P. aeruginosa and S. maltophilia). In addition, we developed and validated a modified protocol to evaluate cytotoxicity using the LDH assay, where bacterial interference with LDH quantification is avoided.


Asunto(s)
Antibiosis , L-Lactato Deshidrogenasa , Staphylococcus aureus , Animales , Antibacterianos , Humanos , Klebsiella pneumoniae , Pseudomonas aeruginosa
8.
mBio ; 11(2)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265330

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of airway infection in cystic fibrosis (CF) patients. P. aeruginosa employs several hierarchically arranged and interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this hierarchy and activates the transcription of dozens of genes, including that encoding the QS regulator RhlR. Paradoxically, inactivating lasR mutations are frequently observed in isolates from CF patients with chronic P. aeruginosa infections. In contrast, mutations in rhlR are rare. We have recently shown that in CF isolates, the QS circuitry is often rewired such that RhlR acts in a LasR-independent manner. To begin understanding how QS activity differs in this rewired background, we characterized QS activation and RhlR-regulated gene expression in P. aeruginosa E90, a LasR-null, RhlR-active chronic infection isolate. In this isolate, RhlR activates the expression of 53 genes in response to increasing cell density. The genes regulated by RhlR include several that encode virulence factors. Some, but not all, of these genes are present in the QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90 produces virulence factors at similar concentrations as PAO1, and in E90, RhlR plays a significant role in mediating cytotoxicity in a three-dimensional lung epithelium cell model. These data illuminate a rewired LasR-independent RhlR regulon in chronic infection isolates and suggest further investigation of RhlR as a possible target for therapeutic development in chronic infections.IMPORTANCEPseudomonas aeruginosa is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Many isolates from patients with chronic CF infections appear to use an alternate QS circuitry in which another transcriptional regulator, RhlR, mediates QS. We show that a LasR-null CF clinical isolate engages in QS through RhlR and remains capable of inducing cell death in an in vivo-like lung epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage in RhlR QS and highlight the centrality of RhlR in chronic P. aeruginosa infections.


Asunto(s)
Proteínas Bacterianas/genética , Fibrosis Quística/microbiología , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/genética , Células A549 , Niño , Preescolar , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/genética
9.
Front Microbiol ; 10: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800115

RESUMEN

Antimicrobial peptides (AMPs) are promising templates for the development of novel antibiofilm drugs. Despite the large number of studies on screening and optimization of AMPs, only a few of these evaluated the antibiofilm activity in physiologically relevant model systems. Potent in vitro activity of AMPs often does not translate into in vivo effectiveness due to the interference of the host microenvironment with peptide stability/availability. Hence, mimicking the complex environment found in biofilm-associated infections is essential to predict the clinical potential of novel AMP-based antimicrobials. In the present study, we examined the antibiofilm activity of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K against Pseudomonas aeruginosa in an in vivo-like three-dimensional (3-D) lung epithelial cell model and an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels). Although moderately active when tested alone, lin-SB056-1 was effective in reducing P. aeruginosa biofilm formation in association with 3-D lung epithelial cells in combination with the chelating agent EDTA. The dimeric derivative (lin-SB056-1)2-K demonstrated an enhanced biofilm-inhibitory activity as compared to both lin-SB056-1 and the lin-SB056-1/EDTA combination, reducing the number of biofilm-associated bacteria up to 3-Log units at concentrations causing less than 20% cell death. Biofilm inhibition by (lin-SB056-1)2-K was reported both for the reference strain PAO1 and cystic fibrosis lung isolates of P. aeruginosa. In addition, using fluorescence microscopy, a significant decrease in biofilm-like structures associated with 3-D cells was observed after peptide exposure. Interestingly, effectiveness of (lin-SB056-1)2-K was also demonstrated in the wound model with a reduction of up to 1-Log unit in biofilm formation by P. aeruginosa PAO1 and wound isolates. Overall, combination treatment and peptide dendrimerization emerged as promising strategies to improve the efficacy of AMPs, especially under challenging host-mimicking conditions. Furthermore, the results of the present study underlined the importance of evaluating the biological properties of novel AMPs in in vivo-like model systems representative of specific infectious sites in order to make a more realistic prediction of their therapeutic success, and avoid the inclusion of unpromising peptides in animal studies and clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA