Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Bacteriol ; 195(11): 2632-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564168

RESUMEN

NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/genética , Neisseria gonorrhoeae/enzimología , Nitrito Reductasas/genética , Rhodobacter capsulatus/enzimología , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cuello del Útero/microbiología , Complejo IV de Transporte de Electrones/metabolismo , Células Epiteliales/microbiología , Femenino , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Gonorrea/microbiología , Humanos , Viabilidad Microbiana , Neisseria gonorrhoeae/genética , Nitrito Reductasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Filogenia , ARN Bacteriano/genética , Rhodobacter capsulatus/genética , Eliminación de Secuencia
2.
Infect Immun ; 77(9): 3522-32, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19528210

RESUMEN

Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Neisseria gonorrhoeae/fisiología , Anaerobiosis , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Células Cultivadas , Citocromo-c Peroxidasa/genética , Femenino , Humanos , Neisseria gonorrhoeae/genética , Óxido Nítrico/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Biochim Biophys Acta ; 1767(2): 189-96, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17306216

RESUMEN

Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c(552), is similar to a number of c-type cytochromes from the alpha-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c(552) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.


Asunto(s)
Alphaproteobacteria/química , Arsenitos/metabolismo , Grupo Citocromo c/fisiología , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Clonación Molecular , Grupo Citocromo c/química , Grupo Citocromo c/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Oxidación-Reducción , Oxidorreductasas/metabolismo
4.
Infect Immun ; 76(8): 3569-76, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18426887

RESUMEN

mntABC from Neisseria gonorrhoeae encodes an ABC permease which includes a periplasmic divalent cation binding receptor protein of the cluster IX family, encoded by mntC. Analysis of an mntC mutant showed that growth of N. gonorrhoeae could be stimulated by addition of either manganese(II) or zinc(II) ions, suggesting that the MntABC system could transport both ions. In contrast, growth of the mntAB mutant in liquid culture was possible only when the medium was supplemented with an antioxidant such as mannitol, consistent with the view that ion transport via MntABC is essential for protection of N. gonorrhoeae against oxidative stress. Using recombinant MntC, we determined that MntC binds Zn(2+) and Mn(2+) with almost equal affinity (dissociation constant of approximately 0.1 microM). Competition assays with the metallochromic zinc indicator 4-(2-pyridylazo)resorcinol showed that MntC binds Mn(2+) and Zn(2+) at the same binding site. Analysis of the N. gonorrhoeae genome showed that MntC is the only Mn/Zn metal binding receptor protein cluster IX in this bacterium, in contrast to the situation in many other bacteria which have systems with dedicated Mn and Zn binding proteins as part of distinctive ABC cassette permeases. Both the mntC and mntAB mutants had reduced intracellular survival in a human cervical epithelial cell model and showed reduced ability to form a biofilm. These data suggest that the MntABC transporter is of importance for survival of Neisseria gonorrhoeae in the human host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cationes Bivalentes/metabolismo , Cuello del Útero/microbiología , Proteínas de Transporte de Membrana/metabolismo , Metales/metabolismo , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/patogenicidad , Proteínas Bacterianas/genética , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Línea Celular , Cuello del Útero/citología , Células Epiteliales/microbiología , Femenino , Humanos , Cinética , Proteínas de Transporte de Membrana/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crecimiento & desarrollo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo
5.
J Mol Biol ; 359(1): 66-75, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16616188

RESUMEN

The overexpression of LIM-only protein 2 (LMO2) in T-cells, as a result of chromosomal translocations, retroviral insertion during gene therapy, or in transgenic mice models, leads to the onset of T-cell leukemias. LMO2 comprises two protein-binding LIM domains that allow LMO2 to interact with multiple protein partners, including LIM domain-binding protein 1 (Ldb1, also known as CLIM2 and NLI), an essential cofactor for LMO proteins. Sequestration of Ldb1 by LMO2 in T-cells may prevent it binding other key partners, such as LMO4. Here, we show using protein engineering and enzyme-linked immunosorbent assay (ELISA) methodologies that LMO2 binds Ldb1 with a twofold lower affinity than does LMO4. Thus, excess LMO2 rather than an intrinsically higher binding affinity would lead to sequestration of Ldb1. Both LIM domains of LMO2 are required for high-affinity binding to Ldb1 (K(D) = 2.0 x 10(-8) M). However, the first LIM domain of LMO2 is primarily responsible for binding to Ldb1 (K(D) = 2.3 x 10(-7) M), whereas the second LIM domain increases binding by an order of magnitude. We used mutagenesis in combination with yeast two-hybrid analysis, and phage display selection to identify LMO2-binding "hot spots" within Ldb1 that locate to the LIM1-binding region. The delineation of this region reveals some specific differences when compared to the equivalent LMO4:Ldb1 interaction that hold promise for the development of reagents to specifically bind LMO2 in the treatment of leukemia.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Conformación Proteica , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Dominio LIM , Proteínas con Homeodominio LIM , Metaloproteínas/genética , Ratones , Modelos Moleculares , Unión Proteica , Proteínas Proto-Oncogénicas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Biochim Biophys Acta ; 1656(2-3): 148-55, 2004 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15178476

RESUMEN

Heterotrophic arsenite oxidation by Hydrogenophaga sp. str. NT-14 is coupled to the reduction of oxygen and appears to yield energy for growth. Purification and partial characterization of the arsenite oxidase revealed that it (1). contains two heterologous subunits, AroA (86 kDa) and AroB (16 kDa), (2). has a native molecular mass of 306 kDa suggesting an alpha(3)beta(3) configuration, and (3). contains molybdenum and iron as cofactors. Although the Hydrogenophaga sp. str. NT-14 arsenite oxidase shares similarities to the arsenite oxidases purified from NT-26 and Alcaligenes faecalis, it differs with respect to activity and overall conformation. A c-551-type cytochrome was purified from Hydrogenophaga sp. str. NT-14 and appears to be the physiological electron acceptor for the arsenite oxidase. The cytochrome can also accept electrons from the purified NT-26 arsenite oxidase. A hypothetical electron transport chain for heterotrophic arsenite oxidation is proposed.


Asunto(s)
Comamonadaceae/enzimología , Citocromos c/fisiología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Citocromos c/química , Citocromos c/aislamiento & purificación , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Hierro/química , Datos de Secuencia Molecular , Peso Molecular , Molibdeno/química , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Oxígeno/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
7.
J Bacteriol ; 186(6): 1614-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14996791

RESUMEN

The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an alpha2beta2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per alpha2beta2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc1 and b6f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.


Asunto(s)
Alphaproteobacteria/enzimología , Bacterias Gramnegativas Quimiolitotróficas/enzimología , Molibdeno/química , Oxidorreductasas , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Secuencia de Aminoácidos , Arsenitos/metabolismo , Bacterias Gramnegativas Quimiolitotróficas/genética , Bacterias Gramnegativas Quimiolitotróficas/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutagénesis Insercional , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Periplasma/enzimología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA