Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Physiol Cell Physiol ; 327(3): C661-C670, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981609

RESUMEN

Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.


Asunto(s)
Caquexia , Microbioma Gastrointestinal , Músculo Esquelético , Neoplasias , Caquexia/metabolismo , Caquexia/microbiología , Caquexia/etiología , Humanos , Microbioma Gastrointestinal/fisiología , Neoplasias/microbiología , Neoplasias/complicaciones , Neoplasias/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiología , Disbiosis/microbiología , Tejido Adiposo/metabolismo , Tejido Adiposo/microbiología , Tejido Adiposo/inmunología
2.
Am J Physiol Cell Physiol ; 326(2): C606-C621, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189130

RESUMEN

Immune cell-driven pathways are linked to cancer cachexia. Tumor presence is associated with immune cell infiltration whereas cytotoxic chemotherapies reduce immune cell counts. Despite these paradoxical effects, both cancer and chemotherapy can cause cachexia; however, our understanding of immune responses in the cachexia condition with cancer and chemotherapy is largely unknown. We sought to advance our understanding of the immunology underlying cancer and cancer with chemotherapy-induced cachexia. CD2F1 mice were given 106 C26 cells, followed by five doses of 5-fluorouracil (5FU; 30 mg/kg LM, ip) or PBS. Indices of cachexia and tumor (TUM), skeletal muscle (SKM), and adipose tissue (AT) immune cell populations were examined using high-parameter flow cytometry. Although 5FU was able to stunt tumor growth, % body weight loss and muscle mass were not different between C26 and C26 + 5FU. C26 increased CD11b+Ly6g+ and CD11b+Ly6cInt inflammatory myeloid cells in SKM and AT; however, both populations were reduced with C26 + 5FU. tSNE analysis revealed 24 SKM macrophage subsets wherein 8 were changed with C26 or C26 + 5FU. C26 + 5FU increased SKM CD11b-CD11c+ dendritic cells, CD11b-NK1.1+ NK-cells, and CD11b-B220+ B-cells, and reduced Ly6cHiCX3CR1+CD206+CD163IntCD11c-MHCII- infiltrated macrophages and other CD11b+Ly6cHi myeloid cells compared with C26. Both C26 and C26 + 5FU had elevated CD11b+F480+CD206+MHCII- or more specifically Ly6cLoCX3CR1+CD206+CD163IntCD11c-MHCII- profibrotic macrophages. 5FU suppressed tumor growth and decreased SKM and AT inflammatory immune cells without protecting against cachexia suggesting that these cells are not required for wasting. However, profibrotic cells and muscle inflammatory/atrophic signaling appear consistent with cancer- and cancer with chemotherapy-induced wasting and remain potential therapeutic targets.NEW & NOTEWORTHY Despite being an immune-driven condition, our understanding of skeletal muscle and adipose tissue immune cells with cachexia is limited. Here, we identified immune cell populations in tumors, skeletal muscle, and adipose tissue in C26 tumor-bearing mice with/without 5-fluorouracil (5FU). C26 and C26 + 5FU had increased skeletal muscle profibrotic macrophages, but 5FU reduced inflammatory myeloid cells without sparing mass. Tumor presence and chemotherapy have contrasting effects on certain immune cells, which appeared not necessary for wasting.


Asunto(s)
Antineoplásicos , Fluorouracilo , Ratones , Animales , Fluorouracilo/efectos adversos , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Antineoplásicos/farmacología
3.
Am J Physiol Cell Physiol ; 327(3): C684-C697, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39010842

RESUMEN

Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Gotas Lipídicas , Ratones Endogámicos C57BL , Músculo Esquelético , Animales , Caquexia/metabolismo , Caquexia/patología , Caquexia/etiología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/complicaciones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Ratones , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Mitocondrias Musculares/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura
4.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G591-G606, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469632

RESUMEN

Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , Mucosa Intestinal , Ratones Endogámicos C57BL , Animales , Femenino , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Colitis/inmunología , Colitis/microbiología , Alcoholes Grasos/farmacología , Diinos/farmacología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/inmunología , Colon/microbiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/microbiología
5.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G318-G333, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489869

RESUMEN

Currently available colorectal cancer (CRC) therapies have limited efficacy and severe adverse effects that may be overcome with the alternative use of natural compounds. We previously reported that panaxynol (PA), a bioactive component in American ginseng, possesses anticancer properties in vitro and suppresses murine colitis through its proapoptotic and anti-inflammatory properties. Because colitis is a predisposing factor of CRC and inflammation is a major driver of CRC, we sought to evaluate the therapeutic potential of PA in CRC. Azoxymethane-dextran sodium sulfate (AOM/DSS) mice (C57BL/6) were administered 2.5 mg/kg PA or vehicle 3 times/wk via oral gavage over 12 wk. PA improved clinical symptoms (P ≤ 0.05) and reduced tumorigenesis (P ≤ 0.05). This improvement may be reflective of PA's restorative effect on intestinal barrier function; PA upregulated the expression of essential tight junction and mucin genes (P ≤ 0.05) and increased the abundance of mucin-producing goblet cells (P ≤ 0.05). Given that macrophages play a substantial role in the pathogenesis of CRC and that we previously demonstrated that PA targets macrophages in colitis, we next assessed macrophages. We show that PA reduces the relative abundance of colonic macrophages within the lamina propria (P ≤ 0.05), and this was consistent with a reduction in the expression of important markers of macrophages and inflammation (P ≤ 0.05). We further confirmed PA's inhibitory effects on macrophages in vitro under CRC conditions (P ≤ 0.05). These results suggest that PA is a promising therapeutic compound to treat CRC and improve clinical symptoms given its ability to inhibit macrophages and modulate the inflammatory environment in the colon.NEW & NOTEWORTHY We report that panaxynol (PA) reduces colorectal cancer (CRC) by improving the colonic and tumor environment. Specifically, we demonstrate that PA improves crypt morphology, upregulates crucial tight junction and mucin genes, and promotes the abundance of mucin-producing goblet cells. Furthermore, PA reduces macrophages and associated inflammation, important drivers of CRC, in the colonic environment. This present study provides novel insights into the potential of PA as a therapeutic agent to ameliorate CRC tumorigenesis.


Asunto(s)
Colitis , Neoplasias Colorrectales , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Inflamación/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Azoximetano/metabolismo , Azoximetano/farmacología , Azoximetano/uso terapéutico , Macrófagos/metabolismo , Neoplasias Colorrectales/metabolismo , Mucinas/metabolismo , Sulfato de Dextran/farmacología
6.
Physiol Genomics ; 54(11): 433-442, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121133

RESUMEN

miRNA155 (miR155) has emerged as an important regulator of breast cancer (BrCa) development. Studies have consistently noted an increase in miR155 levels in serum and/or tissues in patients with BrCa. However, what is less clear is whether this increase in miR155 is a reflection of oncogenic or tumor suppressive properties. To study the effects of miR155 in a transgenic model of BrCA, we developed an MMTV-PyMT mouse deficient in miR155 (miR155-/- PyMT). miR155-/- mice (n = 11) exhibited reduced tumor number and volume palpations at ∼14-18 wk of age compared with miR155 sufficient littermates (n = 12). At 19 wk, mammary glands were excised from tumors for RT-PCR, and tumors were counted, measured, and weighed. miR155-/- PyMT mice exhibited reduced tumor volume, number, and weight, which was confirmed by histopathological analysis. There was an increase in apoptosis with miR155 deficiency and a decrease in proliferation. As expected, miR155 deficiency resulted in upregulated gene expression of suppressor of cytokine signaling 1 (Socs1)-its direct target. There was a reduction in gene expression of macrophage markers (CD68, Adgre1, Itgax, Mrc1) with miR-155-/- and this was confirmed with immunofluorescence staining for F4/80. miR155-/- increased expression of M1 macrophage marker Nos2 and reduced expression of M2 macrophage markers IL-10, IL-4, Arg1, and MMP9. Overall, miR155 deficiency reduced BrCA and improved the tumor microenvironment through the reduction of genes associated with protumorigenic processes. However, given the inconsistencies in the literature, additional studies are needed before any attempts are made to harness miR155 as a potential oncogenic or tumor suppressive miRNA.NEW & NOTEWORTHY To examine the effects of miR155 in a transgenic model of breast cancer, we developed an MMTV-PyMT mouse-deficient in miR155. We demonstrate that global loss of miR155 resulted in blunted tumor growth through modulating the tumor microenvironment. Specifically, miR155-deficient mice had smaller and less invasive tumors, an increase in apoptosis and a decrease in proliferation, a reduction in tumor-associated macrophages, and the expression of genes associated with protumoral processes.


Asunto(s)
Metaloproteinasa 9 de la Matriz , MicroARNs , Ratones , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-10 , Carga Tumoral , Interleucina-4 , Modelos Animales de Enfermedad , Carcinogénesis , MicroARNs/genética , Microambiente Tumoral
7.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G554-G561, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283090

RESUMEN

Ulcerative colitis (UC) is a chronic disease that is characterized by diffuse inflammation of the colonic and rectal mucosa. The burden of UC is rising globally with significant disparities in levels and trends of disease in different countries. The pathogenesis of UC involves the presence of pathogenic factors including genetic, environmental, autoimmune, and immune-mediated components. Evidence suggests that disturbed interactions between the host immune system and gut microbiome contribute to the origin and development of UC. Current medications for UC include antibiotics, corticosteroids, and biological drugs, which can have deleterious off-target effects on the gut microbiome, contributing to increased susceptibility to severe infections and chronic immunosuppression. Alternative, nonpharmacological, and behavioral interventions have been proposed as safe and effective treatments to alleviate UC, while also holding the potential to improve overall life quality. This mini-review will discuss the interactions between the immune system and the gut microbiome in the case of UC. In addition, we suggest nonpharmacological and behavioral strategies aimed at restoring a proper microbial-immune relationship.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Humanos , Colitis Ulcerosa/patología , Homeostasis , Inmunidad
8.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G712-G719, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471628

RESUMEN

Intestinal mucositis remains one of the most debilitating side effects related to chemotherapy. The onset and persistence of mucositis is an intricate physiological process involving cross-communication between the specific chemotherapeutic drug, the immune system, and gut microbes that results in a loss of mucosal integrity leading to gut-barrier dysfunction. Intestinal mucositis has a severe impact on a patient's quality of life and negatively influences the outcome of treatment. Most importantly, intestinal mucositis is a major contributor to the decreased survival rates and early onset of death associated with certain chemotherapy treatments. Understanding the pathophysiology and symptomology of intestinal mucositis is important in reducing the negative consequences of this condition. Prophylaxis, early diagnosis, and proper symptom management are essential to improved survival outcomes in patients with cancer. This review focuses on the pathobiology of intestinal mucositis that accompanies chemotherapy treatments. In addition, we will discuss the therapeutic potential of select strategies that have shown promise in mitigating chemotherapies' off-target effects without hampering their anticancer efficacy.NEW & NOTEWORTHY Intestinal mucositis, or damage to the intestinal mucosa, is a common side effect of chemotherapy. In this review, we describe the pathobiology of intestinal mucositis that is associated with chemotherapy treatments. In addition, we discuss the efficacy of several potential therapeutic strategies that have shown some potential in alleviating chemotherapies' off-target effects.


Asunto(s)
Antineoplásicos/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Mucositis/inducido químicamente , Humanos
9.
Exp Physiol ; 104(3): 385-397, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30576589

RESUMEN

NEW FINDINGS: What is the central question of this study? Interleukin-6 has been associated with muscle mass and metabolism in both physiological and pathological conditions. A causal role for interleukin-6 in the induction of fatigue and disruption of mitochondrial function has not been determined. What is the main finding and its importance? We demonstrate that chronically elevated interleukin-6 increased skeletal muscle fatigability and disrupted mitochondrial content and function independent of changes in fibre type and mass. ABSTRACT: Interleukin-6 (IL-6) can initiate intracellular signalling in skeletal muscle by binding to the IL-6-receptor and interacting with the transmembrane gp130 protein. Circulating IL-6 has established effects on skeletal muscle mass and metabolism in both physiological and pathological conditions. However, the effects of circulating IL-6 on skeletal muscle function are not well understood. The purpose of this study was to determine whether chronically elevated systemic IL-6 was sufficient to disrupt skeletal muscle force, fatigue and mitochondrial function. Additionally, we examined the role of muscle gp130 signalling during overexpression of IL-6. Systemic IL-6 overexpression for 2 weeks was achieved by electroporation of an IL-6 overexpression plasmid or empty vector into the quadriceps of either C57BL/6 (WT) or skeletal muscle gp130 knockout (KO) male mice. Tibialis anterior muscle in situ functional properties and mitochondrial respiration were determined. Interleukin-6 accelerated in situ skeletal muscle fatigue in the WT, with a 18.5% reduction in force within 90 s of repeated submaximal contractions and a 7% reduction in maximal tetanic force after 5 min. There was no difference between fatigue in the KO and KO+IL-6. Interleukin-6 reduced WT muscle mitochondrial respiratory control ratio by 36% and cytochrome c oxidase activity by 42%. Interleukin-6 had no effect on either KO respiratory control ratio or cytochrome c oxidase activity. Interleukin-6 also had no effect on body weight, muscle mass or tetanic force in either genotype. These results provide evidence that 2 weeks of elevated systemic IL-6 is sufficient to increase skeletal muscle fatigability and decrease muscle mitochondrial content and function, and these effects require muscle gp130 signalling.


Asunto(s)
Interleucina-6/metabolismo , Mitocondrias/metabolismo , Fatiga Muscular/fisiología , Músculo Esquelético/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/fisiología , Condicionamiento Físico Animal/fisiología , Transducción de Señal/fisiología
10.
Semin Cell Dev Biol ; 54: 53-67, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26593326

RESUMEN

While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.


Asunto(s)
Caquexia/etiología , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Oxidación-Reducción
11.
Exerc Sport Sci Rev ; 46(4): 247-253, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30001273

RESUMEN

Skeletal muscle has the dynamic capability to modulate protein turnover in response to anabolic stimuli, such as feeding and contraction. We propose that anabolic resistance, the suppressed ability to induce protein synthesis, is central to cancer-induced muscle wasting. Furthermore, we propose that resistance exercise training has the potential to attenuate or treat cancer-induced anabolic resistance through improvements in oxidative metabolism.


Asunto(s)
Caquexia/terapia , Terapia por Ejercicio , Proteínas Musculares/biosíntesis , Músculo Esquelético/fisiopatología , Neoplasias/terapia , Entrenamiento de Fuerza , Humanos , Mitocondrias Musculares/patología
12.
J Cachexia Sarcopenia Muscle ; 15(1): 124-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062911

RESUMEN

BACKGROUND: More than 650 million people are obese (BMI > 30) worldwide, which increases their risk for several metabolic diseases and cancer. While cachexia and obesity are at opposite ends of the weight spectrum, leading many to suggest a protective effect of obesity against cachexia, mechanistic support for obesity's benefit is lacking. Given that obesity and cachexia are both accompanied by metabolic dysregulation, we sought to investigate the impact of obesity on skeletal muscle mass loss and mitochondrial dysfunction in murine cancer cachexia. METHODS: Male C57BL/6 mice were given a purified high fat or standard diet for 16 weeks before being implanted with 106 Lewis lung carcinoma (LLC) cells. Mice were monitored for 25 days, and hindlimb muscles were collected for cachexia indices and mitochondrial assessment via western blotting, high-resolution respirometry and transmission electron microscopy (TEM). RESULTS: Obese LLC mice experienced significant tumour-free body weight loss similar to lean (-12.8% vs. -11.8%, P = 0.0001) but had reduced survival (33.3% vs. 6.67%, χ2  = 10.04, P = 0.0182). Obese LLC mice had reduced muscle weights (-24%, P < 0.0354) and mCSA (-16%, P = 0.0004) with similar activation of muscle p65 (P = 0.0337), and p38 (P = 0.0008). ADP-dependent coupled respiration was reduced in both Obese and Obese LLC muscle (-30%, P = 0.0072) consistent with reductions in volitional cage activity (-39%, P < 0.0001) and grip strength (-41%, P < 0.0001). TEM revealed stepwise reductions in intermyofibrillar and subsarcolemmal mitochondrial size with Obese (IMF: -37%, P = 0.0009; SS: -21%, P = 0.0101) and LLC (IMF: -40%, P = 0.0019; SS: -27%, P = 0.0383) mice. Obese LLC mice had increased pAMPK (T172; P = 0.0103) and reduced FIS1 (P = 0.0029) and DRP1 (P < 0.0001) mitochondrial fission proteins, which were each unchanged in Lean LLC. Further, mitochondrial TEM analysis revealed that Obese LLC mice had an accumulation of damaged and dysfunctional mitochondria (IMF: 357%, P = 0.0395; SS: 138%, P = 0.0174) in concert with an accumulation of p62 (P = 0.0328) suggesting impaired autophagy and clearance of damaged mitochondria. Moreover, we observed increases in electron lucent vacuoles only in Obese LLC muscle (IMF: 421%, P = 0.0260; SS: 392%, P = 0.0192), further supporting an accumulation of damaged materials that cannot be properly cleared in the obese cachectic muscle. CONCLUSIONS: Taken together, these results demonstrate that obesity is not protective against cachexia and suggest exacerbated impairments to mitochondrial function and quality control with a particular disruption in the removal of damaged mitochondria. Our findings highlight the need for consideration of the severity of obesity and pre-existing metabolic conditions when determining the impact of weight status on cancer-induced cachexia and functional mitochondrial deficits.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Humanos , Masculino , Animales , Ratones , Caquexia/patología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Atrofia Muscular/patología , Carcinoma Pulmonar de Lewis/complicaciones , Carcinoma Pulmonar de Lewis/patología , Obesidad/complicaciones , Obesidad/patología , Músculo Esquelético/patología
13.
Physiol Rep ; 11(19): e15813, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821408

RESUMEN

It has been suspected that tumor resection surgery itself may accelerate breast cancer (BC) lung metastasis in some patients. Emodin, a natural anthraquinone found in the roots and rhizomes of various plants, exhibits anticancer activity. We examined the perioperative use of emodin in our established surgery wounding murine BC model. Emodin reduced primary BC tumor growth and metastasis in the lungs in both sham and surgical wounded mice, consistent with a reduction in proliferation and enhanced apoptosis (primary tumor and lungs). Further, emodin reduced systemic inflammation, most notably the number of monocytes in the peripheral blood and reduced pro-tumoral M2 macrophages in the primary tumor and the lungs. Consistently, we show that emodin reduces gene expression of select macrophage markers and associated cytokines in the primary tumor and lungs of wounded mice. Overall, we demonstrate that emodin is beneficial in mitigating surgical wounding accelerated lung metastasis in a model of triple-negative BC, which appears to be mediated, at least in part, by its actions on macrophages. These data support the development of emodin as a safe, low-cost, and effective agent to be used perioperatively to alleviate the surgery triggered inflammatory response and consequential metastasis of BC to the lungs.


Asunto(s)
Emodina , Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Emodina/farmacología , Emodina/uso terapéutico , Emodina/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Macrófagos/metabolismo , Pulmón/metabolismo , Línea Celular Tumoral
14.
Front Immunol ; 14: 1253587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701438

RESUMEN

Cachexia, a complex wasting syndrome, significantly affects the quality of life and treatment options for cancer patients. Studies have reported a strong correlation between high platelet count and decreased survival in cachectic individuals. Therefore, this study aimed to investigate the immunopathogenesis of cancer cachexia using the ApcMin/+ mouse model of spontaneous colorectal cancer. The research focused on identifying cellular elements in the blood at different stages of cancer cachexia, assessing inflammatory markers and fibrogenic factors in the skeletal muscle, and studying the behavioral and metabolic phenotype of ApcMin/+ mice at the pre-cachectic and severely cachectic stages. Platelet measurements were also obtained from other animal models of cancer cachexia - Lewis Lung Carcinoma and Colon 26 adenocarcinoma. Our study revealed that platelet number is elevated prior to cachexia development in ApcMin/+ mice and can become activated during its progression. We also observed increased expression of TGFß2, TGFß3, and SMAD3 in the skeletal muscle of pre-cachectic ApcMin/+ mice. In severely cachectic mice, we observed an increase in Ly6g, CD206, and IL-10 mRNA. Meanwhile, IL-1ß gene expression was elevated in the pre-cachectic stage. Our behavioral and metabolic phenotyping results indicate that pre-cachectic ApcMin/+ mice exhibit decreased physical activity. Additionally, we found an increase in anemia at pre-cachectic and severely cachectic stages. These findings highlight the altered platelet status during early and late stages of cachexia and provide a basis for further investigation of platelets in the field of cancer cachexia.


Asunto(s)
Plaquetas , Neoplasias del Colon , Animales , Ratones , Caquexia/etiología , Calidad de Vida , Modelos Animales de Enfermedad
15.
Curr Opin Support Palliat Care ; 16(3): 151-160, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35862879

RESUMEN

PURPOSE OF REVIEW: Mucositis of the gastrointestinal tract is a debilitating side effect of chemotherapy that negatively influences treatment tolerance and patient life quality. This review will evaluate the recent literature on nonpharmacological strategies that have the potential to improve chemotherapy-induced mucositis (CIM). RECENT FINDINGS: Alternatives to pharmacological approaches have shown great promise in preventing CIM. Natural products, including curcumin, ginseng, quercetin, and patchouli all show potential in mitigating CIM. In addition, dietary patterns, such as the elemental diet, high fiber diet, and diets high in amino acids have documented benefits in preventing CIM. Perhaps the greatest advancement coming to this arena in recent years is in the field of probiotics. Indeed, research on single species as well as probiotic mixtures show potential in reducing CIM insofar as probiotics are now being suggested for treatment of CIM by governing bodies. Although behavioral interventions including psychological interventions and exercise interventions have shown promise in reducing cancer therapy-related side effects, more work in this domain is warranted and particularly in the context of CIM. SUMMARY: Alternatives to pharmacological approaches show great potential for use in prevention and treatment of CIM and should be further developed for use in the clinic.


Asunto(s)
Terapias Complementarias , Mucositis , Probióticos , Humanos , Mucositis/inducido químicamente , Probióticos/uso terapéutico
16.
Physiol Rep ; 10(21): e15497, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36325601

RESUMEN

Approximately one-third of all breast cancer mortality results from metastatic recurrence after initial success of surgery and/or therapy. Although primary tumor removal is widely accepted as beneficial, it has long been suspected that surgery itself contributes to accelerated metastatic recurrence. We investigated surgical wounding's impact on tumor progression and lung metastasis in a murine model of triple negative breast cancer (TNBC). Ten-week-old female mice were inoculated with 4 T1 cells (week 0) and were either subjected to a 2 cm long cutaneous contralateral incision (wounded) or control (non-wounded) on week 2 and monitored for 3 weeks (week 5). Mice with surgical wounding displayed significantly accelerated tumor growth observable as early as 1-week post wounding. This was confirmed by increased tumor volume and tumor weight, post-mortem. Further, surgical wounding increased metastasis to the lungs, as detected by IVIS imaging, in vivo and ex vivo (week 5). As expected then, wounded mice displayed decreased apoptosis and increased proliferation in both the primary tumor and in the lungs. Flow cytometry revealed that primary tumors from wounded mice exhibited increased tumor associated macrophages and specifically M2-like macrophages, which are important in promoting tumor development, maintenance, and metastasis. Immunofluorescence staining and gene expression data further confirms an increase in macrophages in both the primary tumor and the lungs of wounded mice. Our data suggests that surgical wounding accelerates tumor progression and lung metastasis in a mouse model of TNBC, which is likely mediated, at least in part by an increase in macrophages.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Femenino , Animales , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Modelos Animales de Enfermedad , Línea Celular Tumoral , Macrófagos/metabolismo
17.
Nutrients ; 15(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615760

RESUMEN

A cachexia diagnosis is associated with a doubling in hospital stay and increased healthcare cost for cancer patients and most cachectic patients do not survive treatment. Unfortunately, complexity in treating cachexia is amplified by both the underlying malignancy and the anti-cancer therapy which can independently promote cachexia. Quercetin, an organic polyphenolic flavonoid, has demonstrated anti-inflammatory and antioxidant properties with promise in protecting against cancer and chemotherapy-induced dysfunction; however, whether quercetin is efficacious in maintaining muscle mass in tumor-bearing animals receiving chemotherapy has not been investigated. C26 tumor-bearing mice were given 5-fluorouracil (5FU; 30 mg/kg of lean mass i.p.) concomitant with quercetin (Quer; 50 mg/kg of body weight via oral gavage) or vehicle. Both C26 + 5FU and C26 + 5FU + Quer had similar body weight loss; however, muscle mass and cross-sectional area was greater in C26 + 5FU + Quer compared to C26 + 5FU. Additionally, C26 + 5FU + Quer had a greater number and larger intermyofibrillar mitochondria with increased relative protein expression of mitochondrial complexes V, III, and II as well as cytochrome c expression. C26 + 5FU + Quer also had increased MFN1 and reduced FIS1 relative protein expression without apparent benefits to muscle inflammatory signaling. Our data suggest that quercetin protected against cancer and chemotherapy-induced muscle mass loss through improving mitochondrial homeostatic balance.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Quercetina/farmacología , Quercetina/uso terapéutico , Caquexia/inducido químicamente , Caquexia/tratamiento farmacológico , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fluorouracilo/efectos adversos , Mitocondrias/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/metabolismo
18.
JCSM Rapid Commun ; 5(1): 52-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118249

RESUMEN

Background: Low muscle in cancer is associated with an increase in treatment-related toxicities and is a predictor of cancer-related and all-cause mortality. The mechanisms of cancer-related muscle loss are multifactorial, including anorexia, hypogonadism, anaemia, inflammation, malnutrition, and aberrations in skeletal muscle protein turnover and metabolism. Methods: In this narrative review, we summarise relevant literature to (i) review the factors influencing skeletal muscle mass regulation, (ii) provide an overview of how cancer/treatments negatively impact these, (iii) review factors beyond muscle signalling that can impact the ability to participate in and respond to an exercise intervention to counteract muscle loss in cancer, and (iv) provide perspectives on critical areas of future research. Results: Despite the well-known benefits of exercise, there remains a paucity of clinical evidence supporting the impact of exercise in cancer-related muscle loss. There are numerous challenges to reversing muscle loss with exercise in clinical cancer settings, ranging from the impact of cancer/treatments on the molecular regulation of muscle mass, to clinical challenges in responsiveness to an exercise intervention. For example, tumour-related/treatment-related factors (e.g. nausea, pain, anaemia, and neutropenia), presence of comorbidities (e.g. diabetes, arthritis, and chronic obstructive pulmonary disease), injuries, disease progression and bone metastases, concomitant medications (e.g., metformin), can negatively affect an individual's ability to exercise safely and limit subsequent adaptation. Conclusions: This review identifies numerous gaps and oppportunities in the area of low muscle and muscle loss in cancer. Collaborative efforts between preclinical and clinical researchers are imperative to both understanding the mechanisms of atrophy, and develop appropriate therapeutic interventions.

19.
Integr Cancer Ther ; 21: 15347354211067469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34984952

RESUMEN

Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin's tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin's anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin's potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.


Asunto(s)
Antineoplásicos , Emodina , Neoplasias Gastrointestinales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Emodina/farmacología , Emodina/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Transducción de Señal
20.
BMC Complement Med Ther ; 22(1): 279, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274141

RESUMEN

BACKGROUND: Quercetin is an organic flavonoid present in several fruits and vegetables. The anti-inflammatory, antiviral, antioxidant, cardio-protective, anti-carcinogenic and neuroprotective properties demonstrated by this dietary supplement endorses it as a possible treatment for inflammatory diseases and cancer. Unfortunately, conflicting research has cast uncertainties on the toxicity of quercetin. The main purpose of this study was to determine if quercetin has any toxic properties in mice at doses that have shown efficacy in pre-clinical studies regarding cancer, cancer therapy, and their off-target effects. METHODS: A sub-chronic toxicity study of quercetin was examined in male and female CD2F1 mice. Three different doses of quercetin (62, 125, and 250 mg/kg of diet) were infused into the AIN-76A purified diet and administered to mice ad libitum for 98 days. Body weight (BW), food consumption, water intake, body composition, blood count, behavior, and metabolic phenotype were assessed at various timepoints during the course of the experiment. Tissue and organs were evaluated for gross pathological changes and plasma was used to measure alkaline phosphatase (AP), aspartate transaminase (AST), and alanine transaminase (ALT). RESULTS: We found that low (62 mg/kg of diet), medium (125 mg/kg of diet), and high (250 mg/kg of diet) quercetin feeding had no discernible effect on body composition, organ function, behavior or metabolism. CONCLUSIONS: In summary, our study establishes that quercetin is safe for use in both female and male CD2F1 mice when given at ~ 12.5, 25, or 50 mg/kg of BW daily doses for 14 weeks (i.e. 98 days). Further studies will need to be conducted to determine any potential toxicity of quercetin following chronic ingestion.


Asunto(s)
Antioxidantes , Quercetina , Ratones , Masculino , Femenino , Animales , Quercetina/toxicidad , Antioxidantes/toxicidad , Antioxidantes/metabolismo , Alanina Transaminasa , Fosfatasa Alcalina , Peso Corporal , Flavonoides , Aspartato Aminotransferasas , Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA