Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357858

RESUMEN

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Asunto(s)
Ecosistema , Plantas , Filogenia , Semillas , Fenotipo , Hojas de la Planta
2.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303068

RESUMEN

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Asunto(s)
Clima , Ecosistema , Humanos , Fenómenos Fisiológicos de las Plantas , Programas Informáticos , Plantas
3.
Proc Natl Acad Sci U S A ; 117(37): 22858-22865, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868426

RESUMEN

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant-plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Pradera , Plantas , Temperatura
4.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32900958

RESUMEN

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Asunto(s)
Plantas/clasificación , Secuestro de Carbono , Cambio Climático , Ecosistema , Desarrollo de la Planta , Plantas/metabolismo , Suelo/química
5.
Glob Chang Biol ; 27(10): 2088-2101, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511713

RESUMEN

Context-dependencies in species' responses to the same climate change frustrate attempts to generalize and make predictions based on experimental and observational approaches in biodiversity science. Here, we propose predictability may be enhanced by explicitly incorporating macroecological context into analyses of species' responses to climate manipulations. We combined vascular plant species' responses to an 8-year, 12-site turf transplant climate change experiment set in southwestern Norway with climate niche data from the observed 151 species. We used the difference between a species' mean climate across their range and climate conditions at the transplant site ("climate differences") to predict colonization probability, extinction probability, and change in abundance of a species at a site. In analyses across species that ignore species-specific patterns, colonization success increased as species' distribution optima were increasingly warmer than the experimental target site. Extinction probability increased as species' distribution optima were increasingly colder than the target site. These patterns were reflected in change in abundance analyses. We found weak responses to increased precipitation in these oceanic climates. Climate differences were better predictors of species' responses to climate manipulations than range size. Interestingly, similar patterns were found when analyses focused on variation in species-specific responses across sites. These results provide an experimental underpinning to observational studies that report thermophilization of communities and suggest that space-for-time substitutions may be valid for predicting species' responses to climate warming, given other conditions are accounted for (e.g., soil nutrients). Finally, we suggest that this method of putting climate change experiments into macroecological context has the potential to generalize and predict species' responses to climate manipulations globally.


Asunto(s)
Biodiversidad , Cambio Climático , Noruega , Suelo , Especificidad de la Especie
6.
Am J Bot ; 108(5): 798-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988866

RESUMEN

PREMISE: Despite the existence of many studies on the responses of plant species to climate change, there is a knowledge gap on how specific climatic factors and their interactions regulate seed germination in alpine species. This understanding is complicated by the interplay between responses of seeds to the environment experienced during germination, the environment experienced by the maternal plant during seed development and genetic adaptations of the maternal plant to its environment of origin. METHODS: The study species (Anthoxanthum alpinum, A. odoratum) originated from localities with factorial combinations of temperature and precipitation. Seed germination was tested in conditions simulating the extreme ends of the current field conditions and a climate change scenario. We compared the performance of field-collected seeds with that of garden-collected seeds. RESULTS: A change to warmer and wetter conditions resulted in the highest germination of A. alpinum, while A. odoratum germinated the most in colder temperature and with home moisture. The maternal environment did have an impact on plant performance of the study species. Field-collected seeds of A. alpinum tolerated warmer conditions better than those from the experimental garden. CONCLUSIONS: The results demonstrate how knowledge of responses to climate change can increase our ability to understand and predict the fate of alpine species. Studies that aim to understand the germination requirements of seeds under future climates should use experimental designs allowing the separation of genetic differentiation, plasticity and maternal effects and their interactions, since all these mechanisms play an important role in driving species' germination patterns.


Asunto(s)
Germinación , Latencia en las Plantas , Herencia Materna , Poaceae , Semillas , Temperatura
7.
Oecologia ; 191(3): 565-578, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31624961

RESUMEN

Plant species of semi-natural grasslands are threatened by several simultaneous global change drivers, most notably land-use and climate change. In this study, we explore spatiotemporal variation and changes in deterministic (λ) and stochastic population growth rates (λs), and the underlying vital rates of eight populations of Arnica montana at the species' north-western range margin in Norway. We assess to what extent variation in the demographic rates could be attributed to environmental correlates of the key global change drivers likely to operate at the range edge, including population size, surrogates of habitat quality, temperature and precipitation. We found no relationship between λ and population size or habitat quality, but λ declined in response to both increasing precipitation and increasing temperature. Life-table response experiments revealed that the temporal variability was driven by survival and clonality, whereas the spatial variation was driven by clonality. Our results suggest that A. montana has a threshold response to increasing precipitation, likely due to adaptations to local climatic conditions. Growth and flowering were both negatively affected by increasing temperature, but these effects had a low influence on the spatiotemporal variability in λ. In contrast, the stochastic growth rate was negatively influenced by climate change, indicating an increased extinction risk for marginal populations, possibly leading to range contraction of A. montana as climate change proceeds. Altogether, our study illustrates how the fates of peripheral populations, which are critically important in species range dynamics, may be affected by both deterministic and stochastic effects of multiple coinciding global change drivers.


Asunto(s)
Arnica , Cambio Climático , Montana , Noruega , Dinámica Poblacional , Temperatura
8.
Ecology ; 99(1): 148-157, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29065214

RESUMEN

Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance.


Asunto(s)
Ecosistema , Incendios , Ecología , Europa (Continente) , Procesos Estocásticos
9.
Glob Chang Biol ; 24(10): 4657-4666, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851242

RESUMEN

In climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole-community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation. Across four perennial forb species and 12 sites, we found strong responses to both temperature and precipitation change. Changes in population growth rates were mainly due to changes in survival and clonality. In three of the four study species, the combined increase in temperature and precipitation reflected nonadditive, antagonistic interactions of the single climatic changes for population growth rate and survival, while the interactions were additive and synergistic for clonality. This disparity affects the persistence of genotypes, but also suggests that the mechanisms behind the responses of the vital rates differ. In addition, survival effects varied systematically with climatic context, with wetter and warmer + wetter transplants showing less positive or more negative responses at warmer sites. The detailed demographic approach yields important mechanistic insights into how concomitant changes in temperature and precipitation affect plants, which makes our results generalizable beyond the four study species. Our comprehensive study design illustrates the power of replicated field experiments in disentangling the complex relationships and patterns that govern climate change impacts across real-world species and landscapes.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Tiempo (Meteorología) , Ecosistema , Dinámica Poblacional , Lluvia , Temperatura
10.
Ecology ; 97(10): 2791-2801, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27859101

RESUMEN

Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree.


Asunto(s)
Biodiversidad , Cambio Climático , Noruega , Hojas de la Planta , Plantas
11.
Glob Chang Biol ; 22(5): 1915-26, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26845378

RESUMEN

Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate change impacts on plants.


Asunto(s)
Cambio Climático , Pradera , Veronica/fisiología , Viola/fisiología , Biodiversidad , Clima , Calentamiento Global , Noruega , Dinámica Poblacional
13.
Oecologia ; 179(2): 599-608, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26065402

RESUMEN

Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway.


Asunto(s)
Clima , Picea/fisiología , Pinus sylvestris/fisiología , Biomasa , Cambio Climático , Frío , Noruega , Lluvia , Plantones/fisiología , Semillas/fisiología , Temperatura
14.
Glob Chang Biol ; 20(5): 1429-40, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24151191

RESUMEN

Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological function of a seminatural ecosystem. The species that established after prescribed burning were heathland specialists with relatively narrow geographical ranges.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Incendios , Ecosistema , Noruega
15.
Biol Lett ; 10(2): 20131082, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24522633

RESUMEN

Millennia of human land-use have resulted in the widespread occurrence of what have been coined 'domesticated ecosystems'. The anthropogenic imprints on diversity, composition, structure and functioning of such systems are well documented. However, evolutionary consequences of human activities in these ecosystems are enigmatic. Calluna vulgaris (L.) is a keystone species of coastal heathlands in northwest Europe, an ancient semi-natural landscape of considerable conservation interest. Like many species from naturally fire-prone ecosystems, Calluna shows smoke-adapted germination, but it is unclear whether this trait arose prior to the development of these semi-natural landscapes or is an evolutionary response to the anthropogenic fire regime. We show that smoke-induced germination in Calluna is found in populations from traditionally burnt coastal heathlands but is lacking in naturally occurring populations from other habitats with infrequent natural fires. Our study thus demonstrates evolutionary imprints of human land-use in semi-natural ecosystems. Evolutionary consequences of historic anthropogenic impacts on wildlife have been understudied, but understanding these consequences is necessary for informed conservation and ecosystem management.


Asunto(s)
Evolución Biológica , Calluna/fisiología , Conservación de los Recursos Naturales , Germinación , Humo/análisis , Calluna/genética , Incendios , Noruega
16.
Ecol Evol ; 14(2): e11009, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352204

RESUMEN

One of the ways in which plants are responding to climate change is by shifting their ranges to higher elevations. Early life-history stages are major bottlenecks for species' range shifts, and variation in seedling emergence and establishment success can therefore be important determinants of species' ability to establish at higher elevations. Previous studies have found that warming per se tends to not only increase seedling establishment in alpine climates but it also increases plant productivity, which could limit establishment success through increased competition for light. Here we disentangle the relative importance of several climate-related abiotic and biotic factors on sub-alpine species' seedling emergence and survival in the alpine. Specifically, we test how temperature, precipitation and competition from neighbouring vegetation impacts establishment, and also whether species' functional traits, or strategies impact their ability to colonise alpine locations. We found that our six sub-alpine study species were all able to recruit from seed in alpine locations under the extant alpine climate, but their emergence was limited by competition from neighbouring vegetation. This indicates that biotic interactions can hinder the range shifts expected as a result of climate warming. Species with a resource conservative strategy had higher emergence in the extant alpine climate than species with a resource acquisitive strategy, and they were largely unaffected by changes in temperature. The resource acquisitive species, in contrast, had faster emergence under warming, especially when they were released from competition from neighbouring vegetation. Our results indicate that competition from the established vegetation is limiting the spread of lowland species into the alpine, and as the climate continues to warm, species with resource acquisitive traits might gain an advantage.

17.
Trends Ecol Evol ; 39(5): 409-412, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508924

RESUMEN

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Ecosistema , Política Ambiental
18.
Sci Data ; 11(1): 225, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383609

RESUMEN

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Asunto(s)
Ecosistema , Pradera , Plantas , Biodiversidad , Perú , Clima , Altitud , Incendios
19.
Nat Ecol Evol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831016

RESUMEN

Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.

20.
New Phytol ; 198(2): 496-503, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23421728

RESUMEN

Historically, 'physical dormancy', or 'hard seededness', where seeds are prevented from germinating by a water-impermeable seed coat, is viewed as a dormancy mechanism. However, upon water uptake, resumption of metabolism leads to the unavoidable release of volatile by-products, olfactory cues that are perceived by seed predators. Here, we examine the hypothesis that hard seeds are an anti-predator trait that evolved in response to powerful selection by small mammal seed predators. Seeds of two legume species with dimorphic seeds ('hard' and 'soft'), Robinia pseudoacacia and Vicia sativa, were offered to desert hamsters (Phodopus roborovskii) in a series of seed removal studies examining the differences in seed harvest between hard and soft seeds. Volatile compounds emitted by dry and imbibed soft seeds were identified by headspace gas chromatography-mass spectrometry (GC-MS). Fourteen main volatile compounds were identified, and hamsters readily detected both buried imbibed seeds and an artificial 'volatile cocktail' that mimicked the scent of imbibed seeds, but could not detect buried hard or dry soft seeds. We argue that physical dormancy has evolved to hide seeds from mammalian predators. This hypothesis also helps to explain some otherwise puzzling features of hard seeds and has implications for seed dispersal.


Asunto(s)
Latencia en las Plantas/fisiología , Semillas/fisiología , Animales , Cricetinae , Olfato/fisiología , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA