Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Magn Reson Med ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323069

RESUMEN

PURPOSE: To investigate microstructural alterations induced by perfusion fixation in brain tissues using advanced diffusion MRI techniques and estimate their potential impact on the application of ex vivo models to in vivo microstructure. METHODS: We used oscillating gradient spin echo (OGSE) and b-tensor encoding diffusion MRI to examine in vivo and ex vivo microstructural differences in the marmoset brain. OGSE was used to shorten effective diffusion times, whereas b-tensor encoding allowed for the differentiation of isotropic and anisotropic kurtosis. Additionally, we performed Monte Carlo simulations to estimate the potential microstructural changes in the tissues. RESULTS: We report large changes (˜50%-60%) in kurtosis frequency dispersion (OGSE) and in both anisotropic and isotropic kurtosis (b-tensor encoding) after perfusion fixation. Structural MRI showed an average volume reduction of about 10%. Monte Carlo simulations indicated that these alterations could likely be attributed to extracellular fluid loss possibly combined with axon beading and increased dot compartment signal fraction. Little evidence was observed for reductions in axonal caliber. CONCLUSION: Our findings shed light on advanced MRI parameter changes that are induced by perfusion fixation and potential microstructural sources for these changes. This work also suggests that caution should be exercised when applying ex vivo models to infer in vivo tissue microstructure, as significant differences may arise.

2.
Magn Reson Med ; 90(1): 329-342, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877139

RESUMEN

PURPOSE: To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). METHODS: Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions. RESULTS: Koma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature. CONCLUSIONS: Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Fantasmas de Imagen , Aceleración
3.
Magn Reson Med ; 90(2): 615-623, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036384

RESUMEN

PURPOSE: The expanded encoding model incorporates spatially- and time-varying field perturbations for correction during reconstruction. To date, these reconstructions have used the conjugate gradient method with early stopping used as implicit regularization. However, this approach is likely suboptimal for low-SNR cases like diffusion or high-resolution MRI. Here, we investigate the extent that ℓ 1 $$ {\ell}_1 $$ -wavelet regularization, or equivalently compressed sensing (CS), combined with expanded encoding improves trade-offs between spatial resolution, readout time and SNR for single-shot spiral DWI at 7T. The reconstructions were performed using our open-source graphics processing unit-enabled reconstruction toolbox, "MatMRI," that allows inclusion of the different components of the expanded encoding model, with or without CS. METHODS: In vivo accelerated single-shot spirals were acquired with five acceleration factors (R) (2×-6×) and three in-plane spatial resolutions (1.5, 1.3, and 1.1 mm). From the in vivo reconstructions, we estimated diffusion tensors and computed fractional anisotropy maps. Then, simulations were used to quantitatively investigate and validate the impact of CS-based regularization on image quality when compared to a known ground truth. RESULTS: In vivo reconstructions revealed improved image quality with retainment of small features when CS was used. Simulations showed that the joint use of the expanded encoding model and CS improves accuracy of image reconstructions (reduced mean-squared error) over the range of R investigated. CONCLUSION: The expanded encoding model and CS regularization are complementary tools for single-shot spiral diffusion MRI, which enables both higher spatial resolutions and higher R.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Anisotropía
4.
Magn Reson Med ; 86(3): 1403-1419, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33963779

RESUMEN

PURPOSE: To present a method that automatically, rapidly, and in a noniterative manner determines the regularization weighting for wavelet-based compressed sensing reconstructions. This method determines level-specific regularization weighting factors from the wavelet transform of the image obtained from zero-filling in k-space. METHODS: We compare reconstruction results obtained by our method, λauto , to the ones obtained by the L-curve, λLcurve , and the minimum NMSE, λNMSE . The comparisons are done using in vivo data; then, simulations are used to analyze the impact of undersampling and noise. We use NMSE, Pearson's correlation coefficient, high-frequency error norm, and structural similarity as reconstruction quality indices. RESULTS: Our method, λauto , provides improved reconstructed image quality to that obtained by λLcurve regardless of undersampling or SNR and comparable quality to λNMSE at high SNR. The method determines the regularization weighting prospectively with negligible computational time. CONCLUSION: Our main finding is an automatic, fast, noniterative, and robust procedure to determine the regularization weighting. The impact of this method is to enable prospective and tuning-free wavelet-based compressed sensing reconstructions.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Estudios Prospectivos , Análisis de Ondículas
5.
Magn Reson Med ; 84(4): 2219-2230, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32270542

RESUMEN

PURPOSE: To improve the quality of mean apparent propagator (MAP) reconstruction from a limited number of q-space samples. METHODS: We implement an ℓ1 -regularised MAP (MAPL1) to consider higher order basis functions and to improve the fit without increasing the number of q-space samples. We compare MAPL1 with the least-squares optimization subject to non-negativity (MAP), and the Laplacian-regularized MAP (MAPL). We use simulations of crossing fibers and compute the normalized mean squared error (NMSE) and the Pearson's correlation coefficient to evaluate the reconstruction quality in q-space. We also compare coefficient-based diffusion indices in the simulations and in in vivo data. RESULTS: Results indicate that MAPL1 improves NMSE in 1 to 3% when compared to MAP or MAPL in a high undersampling regime. Additionally, MAPL1 produces more reproducible and accurate results for all sampling rates when there are enough basis functions to meet the sparsity criterion for the regularizer. These improved reconstructions also produce better coefficient-based diffusion indices for in vivo data. CONCLUSIONS: Adding an ℓ1 regularizer to MAP allows the use of more basis functions and a better fit without increasing the number of q-space samples. The impact of our research is that a complete diffusion spectrum can be reconstructed from an acquisition time very similar to a diffusion tensor imaging protocol.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Algoritmos , Encéfalo/diagnóstico por imagen , Aumento de la Imagen
6.
NMR Biomed ; 32(3): e4055, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30637831

RESUMEN

Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra-voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q-space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q-space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state-of-the-art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q-space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier-based CS-DSI compared to the SHORE-based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time-limited studies.


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Aceleración , Adulto , Simulación por Computador , Femenino , Humanos , Fantasmas de Imagen
7.
Commun Biol ; 7(1): 1079, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227641

RESUMEN

Bacteria constitute a significant part of the biomass of the human microbiota, but their interactions are complex and difficult to replicate outside the host. Exploiting the superior resolution of magnetic resonance imaging (MRI) to examine signal parameters of selected human isolates may allow tracking of their dispersion throughout the body. Here we investigate longitudinal and transverse MRI relaxation rates and found significant differences between several bacterial strains. Common commensal strains of lactobacilli display notably high MRI relaxation rates, partially explained by elevated cellular manganese content, while other species contain more iron than manganese. Lactobacillus crispatus show particularly high values, 4-fold greater than any other species; up to 60-fold greater signal than relevant tissue background; and a linear relationship between relaxation rate and fraction of live cells. Different bacterial strains have detectable, repeatable MRI relaxation rates that in the future may enable monitoring of their persistence in the human body for enhanced molecular imaging.


Asunto(s)
Imagen por Resonancia Magnética , Microbiota , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metales/metabolismo , Sistema Urogenital/microbiología , Manganeso/metabolismo , Manganeso/análisis
8.
J Orthop Res ; 42(6): 1292-1302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235918

RESUMEN

Production of metal debris from implant wear and corrosion processes is now a well understood occurrence following hip arthroplasty. Evidence has shown that metal ions can enter the bloodstream and travel to distant organs including the brain, and in extreme cases, can induce sensorial and neurological diseases. Our objective was tosimultaneously analyze brain anatomy and physiology in patients with long-term and well-functioning implants. Included were subjects who had received total hip or hip resurfacing arthroplastywith an implantation time of a minimum of 7 years (n = 28) and age- and sex-matched controls (n = 32). Blood samples were obtained to measure ion concentrations of cobalt and chromium, and the Montreal Cognitive Assessment was performed. 3T MRI brain scans were completed with an MPRAGE sequence for ROI segmentation and multiecho gradient echo sequences to generate QSM and R2* maps. Mean QSM and R2* values were recorded for five deep brain and four middle and cortical brain structures on both hemispheres: pallidum, putamen, caudate, amygdala, hippocampus, anterior cingulate, inferior temporal, and cerebellum. No differences in QSM or R2* or cognition scores were found between both groups (p > 0.6654). No correlation was found between susceptibility and blood ion levels for cobalt or chromium in any region of the brain. No correlation was found between blood ion levels and cognition scores. Clinical significance: Results suggest that metal ions released by long-term and well-functioning implants do not affect brain integrity.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Encéfalo , Cromo , Cobalto , Prótesis de Cadera , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Anciano , Cromo/sangre , Cobalto/sangre , Adulto , Estudios de Casos y Controles
9.
Magn Reson Med Sci ; 19(2): 108-118, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31080210

RESUMEN

PURPOSE: To compare different q-space reconstruction methods for undersampled diffusion spectrum imaging data. MATERIALS AND METHODS: We compared the quality of three methods: Mean Apparent Propagator (MAP); Compressed Sensing using Identity (CSI) and Compressed Sensing using Dictionary (CSD) with simulated data and in vivo acquisitions. We used retrospective undersampling so that the fully sampled reconstruction could be used as ground truth. We used the normalized mean squared error (NMSE) and the Pearson's correlation coefficient as reconstruction quality indices. Additionally, we evaluated two propagator-based diffusion indices: mean squared displacement and return to zero probability. We also did a visual analysis around the centrum semiovale. RESULTS: All methods had reconstruction errors below 5% with low undersampling factors and with a wide range of noise levels. However, the CSD method had at least 1-2% lower NMSE than the other reconstruction methods at higher noise levels. MAP was the second-best method when using a sufficiently high number of q-space samples. MAP reconstruction showed better propagator-based diffusion indices for in vivo acquisitions. With undersampling factors greater than 4, MAP and CSI have noticeably more reconstruction error than CSD. CONCLUSION: Undersampled data were best reconstructed by means of CSD in simulations and in vivo. MAP was more accurate in the extraction of propagator-based indices, particularly for in vivo data.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA