Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 281, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773618

RESUMEN

BACKGROUND: Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS: We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFß. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3ß kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION: Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.


Asunto(s)
Células Dendríticas , Tolerancia Inmunológica , Transducción de Señal , Serina-Treonina Quinasas TOR , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Ratones , Inflamación/metabolismo , Cinética , Lipopolisacáridos/farmacología
2.
Biomolecules ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672485

RESUMEN

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Asunto(s)
Adenosina Trifosfato , Diferenciación Celular , Células Dendríticas , Bazo , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Bazo/citología , Bazo/metabolismo , Bazo/efectos de los fármacos , Bazo/inmunología , Ratones , Timosina/farmacología , Timosina/metabolismo , Péptidos/farmacología , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/metabolismo , Artritis Psoriásica/inmunología , Humanos , Ratones Endogámicos C57BL , Tolerancia Inmunológica/efectos de los fármacos
3.
Mol Genet Metab Rep ; 38: 101038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38178812

RESUMEN

Heme oxygenase 1 (HO-1) is the pivotal catalyst for the primary and rate-determining step in heme catabolism, playing a crucial role in mitigating heme-induced oxidative damage. Pathogenic variants in the HMOX1 gene which encodes HO-1, are responsible for a severe, multisystem disease characterized by recurrent inflammatory episodes, organ failure, and an ultimately fatal course. Chronic hemolysis and abnormally low bilirubin levels are cardinal laboratory features of this disorder. In this study, we describe a patient with severe interstitial lung disease, frequent episodes of hyperinflammation non-responsive to immunosuppression, and fatal pulmonary hemorrhage. Employing exome sequencing, we identified two protein truncating variants in HMOX1, c.262_268delinsCC (p.Ala88Profs*51) and a previously unreported variant, c.55dupG (p.Glu19Glyfs*14). Functional analysis in patient-derived lymphoblastoid cells unveiled the complete absence of HO-1 protein expression and a marked reduction in cell viability upon exposure to hemin. These findings confirm the pathogenicity of the identified HMOX1 variants, further underscoring their association with severe pulmonary manifestations . This study describes the profound clinical consequences stemming from disruptions in redox metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA