Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 106: 224-238, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31085251

RESUMEN

Calcitonin gene-related peptide (CGRP) and its receptor have been implicated as a key mediator in the pathophysiology of migraine. Thus, erenumab, a monoclonal antibody antagonist of the CGRP receptor, administered as a once monthly dose of 70 or 140 mg has been approved for the preventive treatment of migraine in adults. Due to the species specificity of erenumab, the cynomolgus monkey was used in the pharmacology, pharmacokinetics, and toxicology studies to support the clinical program. There were no effects of erenumab on platelets in vitro (by binding, activation or phagocytosis assays). Specific staining of human tissues with erenumab did not indicated any off-target binding. There were no erenumab-related findings in a cardiovascular safety pharmacology study in cynomolgus monkeys or in vitro in human isolated coronary arteries. Repeat-dose toxicology studies conducted in cynomolgus monkeys at dose levels up to 225 mg/kg (1 month) or up to 150 mg/kg (up to 6 months) with twice weekly subcutaneous (SC) doses showed no evidence of erenumab-mediated adverse toxicity. There were no effects on pregnancy, embryo-fetal or postnatal growth and development in an enhanced pre-postnatal development study in the cynomolgus monkey. There was evidence of placental transfer of erenumab based on measurable serum concentrations in the infants up to 3 months post birth. The maternal and developmental no-observed-effect level (NOEL) was the highest dose tested (50 mg/kg SC Q2W). These nonclinical data in total indicate no safety signal of concern to date and provide adequate margins of exposure between the observed safe doses in animals and clinical dose levels.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Trastornos Migrañosos/prevención & control , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Anticuerpos Monoclonales Humanizados/sangre , Relación Dosis-Respuesta a Droga , Humanos
2.
Regul Toxicol Pharmacol ; 80: 348-57, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27155597

RESUMEN

Central Nervous System (CNS)-related safety concerns are major contributors to delays and failure during the development of new candidate drugs (CDs). CNS-related safety data on 141 small molecule CDs from five pharmaceutical companies were analyzed to identify the concordance between rodent multi-parameter neurofunctional assessments (Functional Observational Battery: FOB, or Irwin test: IT) and the five most common adverse events (AEs) in Phase I clinical trials, namely headache, nausea, dizziness, fatigue/somnolence and pain. In the context of this analysis, the FOB/IT did not predict the occurrence of these particular AEs in man. For AEs such as headache, nausea, dizziness and pain the results are perhaps unsurprising, as the FOB/IT were not originally designed to predict these AEs. More unexpected was that the FOB/IT are not adequate for predicting 'somnolence/fatigue' nonclinically. In drug development, these five most prevalent AEs are rarely responsible for delaying or stopping further progression of CDs. More serious AEs that might stop CD development occurred at too low an incidence rate in our clinical dataset to enable translational analysis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/inducido químicamente , Sistema Nervioso Central/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Pruebas de Toxicidad/métodos , Animales , Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/fisiopatología , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Humanos , Ratones , Ratas , Reproducibilidad de los Resultados , Medición de Riesgo , Especificidad de la Especie
3.
Bioorg Med Chem Lett ; 25(4): 767-74, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25613679

RESUMEN

The ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aß levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Xantenos/química , Xantenos/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Línea Celular , Células HEK293 , Humanos , Inhibidores de Proteasas/síntesis química , Ratas , Xantenos/síntesis química
4.
Handb Exp Pharmacol ; 229: 385-404, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091648

RESUMEN

Biotechnology-derived pharmaceuticals or biopharmaceuticals (BPs) are molecules such as monoclonal antibodies, soluble/decoy receptors, hormones, enzymes, cytokines, and growth factors that are produced in various biological expression systems and are used to diagnose, treat, or prevent various diseases. Safety pharmacology (SP) assessment of BPs has evolved since the approval of the first BP (recombinant human insulin) in 1982. This evolution is ongoing and is informed by various international harmonization guidelines. Based on these guidelines, the potential undesirable effect of every drug candidate (small molecule or BP) on the cardiovascular, central nervous, and respiratory systems, referred to as the "core battery," should be assessed prior to first-in-human administration. However, SP assessment of BPs poses unique challenges such as choice of test species and integration of SP parameters into repeat-dose toxicity studies. This chapter reviews the evolution of SP assessment of BPs using the approval packages of marketed BPs and discusses the past, current, and new and upcoming approach and methods that can be used to generate high-quality data for the assessment of SP of BPs.


Asunto(s)
Productos Biológicos/toxicidad , Biotecnología , Evaluación Preclínica de Medicamentos/métodos , Animales , Productos Biológicos/efectos adversos , Sistema Nervioso Central/efectos de los fármacos , Control de Medicamentos y Narcóticos , Humanos , Sistema Respiratorio/efectos de los fármacos
5.
Clin Pharmacol Ther ; 116(1): 96-105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38362953

RESUMEN

Oligonucleotide therapeutics (ONTs) represent a new modality with unique pharmacological and chemical properties that modulate gene expression with a high degree of target specificity mediated by complementary Watson-Crick base pair hybridization. To date, the proarrhythmic assessment of ONTs has been influenced by International Conference on Harmonization (ICH) E14 and S7B guidance. To document current hERG/QTc evaluation practices, we reviewed US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) Approval Packages (source: PharmaPendium.com) and collated preclinical and clinical studies for 17 marketed ONTs. In addition, clinical QTc data from 12 investigational ONTs were obtained from the literature. Of the marketed ONTs, eight were tested in the hERG assay with no inhibitory effect identified at the top concentration (range: 34-3,000 µM) tested. Fourteen of the ONTs were evaluated in nonhuman primate cardiovascular studies with 11 of them in dedicated telemetry studies. No effect on QTc intervals were observed (at high exposure multiples) in all studies. Clinically, four ONTs were evaluated in TQT studies; an additional six ONTs were assessed by concentration-QTc interval analysis, and six by routine safety electrocardiogram monitoring. None of the clinical studies identified a QTc prolongation risk; the same was true for the 12 investigational ONTs. A search of the FDA Adverse Event Database indicated no association between approved ONTs and proarrhythmias. Overall, the collective weight of evidence from 29 ONTs demonstrate no clinical proarrhythmic risk based on data obtained from ICH S7B/E14 studies. Thus, new ONTs may benefit from reduced testing strategies because they have no proarrhythmic risk, a similar cardiac safety profile as monoclonal antibodies, proteins, and peptides.


Asunto(s)
Arritmias Cardíacas , Oligonucleótidos , Humanos , Animales , Arritmias Cardíacas/inducido químicamente , Oligonucleótidos/efectos adversos , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , United States Food and Drug Administration , Estados Unidos , Aprobación de Drogas , Medición de Riesgo , Síndrome de QT Prolongado/inducido químicamente , Electrocardiografía
6.
Toxicol Appl Pharmacol ; 268(2): 113-22, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23416206

RESUMEN

Itraconazole (ITZ) is an approved antifungal agent that carries a "black box warning" in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148 receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (>30%) at 0.3µM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥1µM) and prolonged PR/QRS intervals (3µM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC50: 4.2µM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca(2+) channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study.


Asunto(s)
Antifúngicos/farmacología , Itraconazol/farmacología , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Depresión Química , Femenino , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , MAP Quinasa Quinasa 5/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Conejos , Ratas
7.
Clin Transl Sci ; 16(3): 436-446, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36369797

RESUMEN

In prior clinical studies, levocetirizine (LEVO) has demonstrated no effect on ventricular repolarization (QTc intervals), therefore it is a relevant negative control to assess in nonclinical assays to define low proarrhythmic risk. LEVO was tested in beagle dog and cynomolgus monkey (nonhuman primate [NHP]) telemetry models to understand the nonclinical-clinical translation of this negative control. One oral dose of vehicle, LEVO (10 mg/kg/species) or moxifloxacin (MOXI; 30 mg/kg/dog; 80 mg/kg/NHP) was administered to instrumented animals (N = 8/species) using a cross-over dosing design; MOXI was the in-study positive control. Corrected QT interval values (QTcI) were calculated using an individual animal correction factor. Blood samples were taken for drug exposure during telemetry and for pharmacokinetic (PK) analysis (same animals; different day) for exposure-response (C-QTc) modeling. Statistical analysis of QTc-by-timepoint data showed that LEVO treatment was consistent with vehicle, thus no effect on ventricular repolarization was observed over 24 h in both species. PK analysis indicated that LEVO-maximum concentration levels in dogs (range: 12,300-20,100 ng/ml) and NHPs (range: 4090-12,700 ng/ml) were ≥4-fold higher than supratherapeutic drug levels in clinical QTc studies. Slope analysis values in dogs (0.00019 ms/ng/ml) and NHPs (0.00016 ms/ng/ml) were similar to the human C-QTc relationship and indicated no relationship between QTc intervals and plasma levels of LEVO. MOXI treatment caused QTc interval prolongation (dog: 18 ms; NHP: 29 ms). The characterization of LEVO in these non-rodent telemetry studies further demonstrates the value and impact of the in vivo QTc assay to define a "no QTc effect" profile and support clinical safety assessment.


Asunto(s)
Fluoroquinolonas , Síndrome de QT Prolongado , Humanos , Perros , Animales , Macaca fascicularis , Síndrome de QT Prolongado/inducido químicamente , Moxifloxacino , Telemetría
8.
Nucleic Acid Ther ; 33(2): 132-140, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36576986

RESUMEN

In accord with International Conference on Harmonization S7B guidelines, an in vitro human ether-a-go-go-related gene (hERG) assay is one component of an integrated risk assessment for delayed ventricular repolarization. Function of hERG could be affected by direct (acute) mechanisms, or by indirect (chronic) mechanisms. Some approved oligonucleotide therapeutics had submitted hERG data to regulatory agents, which were all collected with the same protocol used for small-molecule testing (incubation time <20 min; acute), however, oligonucleotides have unique mechanisms and time courses of action (indirect). To reframe the hERG testing strategy for silencing RNA (siRNA), an investigation was performed to assess the time course for siRNA-mediated inhibition of hERG function and gene expression. Commercially available siRNAs of hERG were evaluated in a stable hERG-expressed cell line by whole-cell voltage clamp using automated electrophysiology and polymerase chain reaction. In the acute hERG study, no effects were observed after treatment with 100 nM siRNA for 20 min. The chronic effects of 100 nM siRNAs on hERG function were evaluated and recorded over 8-48 h following transfection. At 8 h there was no significant effect, whereas 77% reduction was observed at 48 h. Measurement of hERG mRNA levels demonstrated a 79% and 93% decrease of hERG mRNA at 8 and 48 h, respectively, consistent with inhibition of hERG transcription. The results indicate that an anti-hERG siRNA requires a long exposure time (48 h) in the hERG assay to produce a maximal reduction in hERG current; short exposures (20 min-8 h) had no effect. These findings imply that off-target profiling of novel oligonucleotides could benefit from using hERG protocol with long incubation times to de-risk potential off-target (indirect) effects on the hERG channel. This hERG assay modification may be important to consider if the findings are used to support an integrated nonclinical-clinical risk assessment for QTc (the duration of the QT interval adjusted for heart rate) prolongation.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Humanos , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Línea Celular , ARN Interferente Pequeño/genética
9.
J Pharmacol Toxicol Methods ; 123: 107278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268094

RESUMEN

Understanding translation from preclinical observations to clinical findings is important for evaluating the efficacy and safety of novel compounds. Of relevance to cardiac safety is profiling drug effects on cardiomyocyte (CM) sarcomere shortening and intracellular Ca2+ dynamics. Although CM from different animal species have been used to assess such effects, primary human CM isolated from human organ donor heart represent an ideal non-animal alternative approach. We performed a study to evaluate primary human CM and have them compared to freshly isolated dog cardiomyocytes for their basic function and responses to positive inotropes with well-known mechanisms. Our data showed that simultaneous assessment of sarcomere shortening and Ca2+-transient can be performed with both myocytes using the IonOptix system. Amplitude of sarcomere shortening and Ca2+-transient (CaT) were significantly higher in dog compared to human CM in the basic condition (absence of treatment), while longer duration of sarcomere shortening and CaT were observed in human cells. We observed that human and dog CMs have similar pharmacological responses to five inotropes with different mechanisms, including dobutamine and isoproterenol (ß-adrenergic stimulation), milrinone (PDE3 inhibition), pimobendan and levosimendan (increase of Ca2+sensitization as well as PDE3 inhibition). In conclusion, our study suggests that myocytes obtained from both human donor hearts and dog hearts can be used to simultaneously assess drug-induced effects on sarcomere shortening and CaT using the IonOptix platform.


Asunto(s)
Trasplante de Corazón , Miocitos Cardíacos , Humanos , Perros , Animales , Calcio , Sarcómeros/fisiología , Contracción Miocárdica , Donantes de Tejidos
10.
J Pharmacol Toxicol Methods ; 121: 107265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36997076

RESUMEN

Recent updates and modifications to the clinical ICH E14 and nonclinical ICH S7B guidelines, which both relate to the evaluation of drug-induced delayed repolarization risk, provide an opportunity for nonclinical in vivo electrocardiographic (ECG) data to directly influence clinical strategies, interpretation, regulatory decision-making and product labeling. This opportunity can be leveraged with more robust nonclinical in vivo QTc datasets based upon consensus standardized protocols and experimental best practices that reduce variability and optimize QTc signal detection, i.e., demonstrate assay sensitivity. The immediate opportunity for such nonclinical studies is when adequate clinical exposures (e.g., supratherapeutic) cannot be safely achieved, or other factors limit the robustness of the clinical QTc evaluation, e.g., the ICH E14 Q5.1 and Q6.1 scenarios. This position paper discusses the regulatory historical evolution and processes leading to this opportunity and details the expectations of future nonclinical in vivo QTc studies of new drug candidates. The conduct of in vivo QTc assays that are consistently designed, executed and analyzed will lead to confident interpretation, and increase their value for clinical QTc risk assessment. Lastly, this paper provides the rationale and basis for our companion article which describes technical details on in vivo QTc best practices and recommendations to achieve the goals of the new ICH E14/S7B Q&As, see Rossman et al., 2023 (this journal).


Asunto(s)
Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Drogas en Investigación/efectos adversos , Electrocardiografía , Medición de Riesgo , Bioensayo
11.
J Pharmacol Toxicol Methods ; 123: 107270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164235

RESUMEN

The ICH E14/S7B Questions and Answers (Q&As) guideline introduces the concept of a "double negative" nonclinical scenario (negative hERG assay and negative in vivo QTc study) to demonstrate that a drug does not produce a clinically relevant QT prolongation (i.e., no QT liability). This nonclinical "double negative" data package, along with negative Phase 1 clinical QTc data, may be sufficient to substitute for a clinical Thorough QT (TQT) study in some specific cases. While standalone GLP in vivo cardiovascular studies in non-rodent species are standard practice during nonclinical drug development for small molecule programs, a variety of approaches to the design, conduct, analysis and interpretation are utilized across pharmaceutical companies and contract research organizations (CROs) that may, in some cases, negatively impact the stringent sensitivity needed to fulfill the new Q&As. Subject matter experts from both Pharma and CROs have collaborated to recommend best practices for more robust nonclinical cardiovascular telemetry studies in non-rodent species, with input from clinical and regulatory experts. The aim was to increase consistency and harmonization across the industry and to ensure delivery of high quality nonclinical QTc data to meet the proposed sensitivities defined within the revised ICH E14/S7B Q&As guideline (Q&As 5.1 and 6.1). The detailed best practice recommendations presented here cover the design and execution of the safety pharmacology cardiovascular study, including optimal methods for acquiring, analyzing, reporting, and interpreting the resulting QTc and pharmacokinetic data to allow for direct comparison to clinical exposures and assessment of safety margin for QTc prolongation.


Asunto(s)
Sistema Cardiovascular , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Telemetría , Electrocardiografía
12.
Toxicol Pathol ; 40(6): 899-917, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22552394

RESUMEN

AMG X, a human neutralizing monoclonal antibody (mAb) against a soluble human protein, caused thrombocytopenia, platelet activation, reduced mean arterial pressure, and transient loss of consciousness in cynomolgus monkeys after first intravenous administration. In vitro, AMG X induced activation in platelets from macaque species but not from humans or baboons. Other similar mAbs against the same pharmacological target failed to induce these in vivo and in vitro effects. In addition, the target protein was known to not be expressed on platelets, suggesting that platelet activation occurred through an off-target mechanism. AMG X bound directly to cynomolgus platelets and required both the Fab and Fc portion of the mAb for platelet activation. Binding to platelets was inhibited by preincubation of AMG X with its pharmacological target or with anti-human Fc antibodies or by preincubation of platelets with AMG X F(ab')(2) or human immunoglobulin (IVIG). AMG X F(ab')(2) did not activate platelets. Thus, platelet activation required both recognition/binding of a platelet ligand with the Fab domain and interaction of platelet Fc receptors (i.e., FcγRIIa) with the Fc domain. These findings reflect the complexity of the mechanism of action of mAbs and the increasing awareness of potential for unintended effects in preclinical species.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Plaquetas/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Administración Intravenosa , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacocinética , Plaquetas/metabolismo , Humanos , Hipotensión/sangre , Hipotensión/inducido químicamente , Fragmentos Fab de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Macaca fascicularis , Masculino , Papio , Agregación Plaquetaria/efectos de los fármacos , Unión Proteica , Serotonina/metabolismo , Síncope/sangre , Síncope/inducido químicamente , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Tromboxano B2/metabolismo
13.
Toxicol Sci ; 187(1): 3-24, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35148401

RESUMEN

The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.


Asunto(s)
Síndrome de QT Prolongado , Torsades de Pointes , Potenciales de Acción , Animales , Electrocardiografía , Corazón , Humanos , Síndrome de QT Prolongado/inducido químicamente , Estudios Retrospectivos , Torsades de Pointes/inducido químicamente
14.
J Pharmacol Exp Ther ; 337(1): 2-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205913

RESUMEN

Drug-induced cardiac arrhythmia, specifically Torsades de pointes, is associated with QT/QTc interval prolongation, thus prolongation of the QT interval is considered as a biomarker for Torsades de pointes risk (N Engl J Med 350:1013-1022, 2004). Specific inhibition of human ether-a-go-go-related gene (hERG) potassium channels has been recognized as the main mechanism for QT prolongation (Cardiovasc Res 58:32-45, 2003). This mechanism has been demonstrated for a variety of small-molecule agents, which access the inner pore of the hERG channel preferentially from inside the cell. Peptide inhibitors of hERG, such as BeKm-1, interact with the extracellular amino acid residues close to the external pore region of the channel. In this study, the isolated rabbit heart was used to assess whether BeKm-1 could induce QTc prolongation like dofetilide and N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide (E-4031). Five hearts were perfused with 10 and 100 nM BeKm-1 sequentially. ECG parameters and left ventricular contractility were measured with spontaneously beating hearts. Both concentrations of BeKm-1 prolonged QTc intervals significantly and concentration-dependently (4.7 and 16.3% at 10 and 100 nM, respectively). When evaluated for their inhibitory effect in a hERG functional assay, BeKm-1, dofetilide, and E-4031 caused QTc prolongation at concentrations that caused significant hERG channel inhibition. Lastly, two polyclonal anti-hERG antibodies were also assessed in the hERG channel assay and found to be devoid of any inhibitory effect. These results indicated that the isolated rabbit heart assay can be used to measure QTc changes caused by specific hERG inhibition by peptides that specifically block the external pore region of the channel.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Corazón/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Venenos de Escorpión/farmacología , Animales , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/fisiología , Femenino , Células HEK293 , Corazón/fisiología , Humanos , Técnicas In Vitro , Síndrome de QT Prolongado/fisiopatología , Péptidos/farmacología , Péptidos/toxicidad , Conejos , Venenos de Escorpión/toxicidad
15.
J Pharmacol Toxicol Methods ; 109: 107067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33857614

RESUMEN

The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.


Asunto(s)
Síndrome de QT Prolongado , Animales , Perros , Electrocardiografía , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Primates , Estudios Retrospectivos , Telemetría
16.
J Pharmacol Toxicol Methods ; 111: 107082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34082139

RESUMEN

INTRODUCTION: Cardioplegic solutions were first developed to preserve heart function during cardiac surgeries and heart transplants but have application in the nonclinical setting. Due to lack of lab space in the vivarium, cardioplegic solution was used to conserve cardiac function for ex-vivo studies performed in a separate building. All studies in this report were conducted with isolated female rabbit hearts (IRHs) via retrograde perfusion using the Langendorff apparatus to investigate if cardioplegia usage affects cardiac function. METHODS: Cardioplegia was achieved with a hyperkalemia (27 mM KCL) solution kept at 4 °C. Cardiac function was assessed by measuring ECG parameters, left ventricular contractility, and coronary flow under constant perfusion pressure. IRHs were cannulated with Krebs Henseleit buffer (KH) either fresh or after cardioplegic solution storage (C-IRH). Three comparisons were performed with and without cardioplegia; (i) direct side-by side studies of cardiac function; (ii) pharmacological responses to typical ion channels blockers, dofetilide, flecainide, and diltiazem; (iii) retrospective evaluation of cardiac functions in a large sample of hearts. RESULTS: In the side-by-side comparisons, cardioplegia-stored IRHs (C-IRH; storage time 90 min) had similar electrocardiographic (ECG) and hemodynamic parameters to fresh-cannulated hearts with KH buffer (KH-IRH). In addition, responses to dofetilide, flecainide, and diltiazem, were similar for C-IRH and KH-IRH hearts. Over the years (2006-2011), baseline data was collected from 79 hearts without cardioplegia and 100 hearts with cardioplegia (C-IRH; storage time 15 min), which showed no meaningful differences in a retrospective analysis. DISCUSSION: Cardiac function was preserved after cardioplegic treatment, however, coronary flow rates were decreased (-19.3%) in C-IRH hearts which indicated an altered coronary vascular tone. In conclusion, storage in cardioplegic solution preserves rabbit cardiac function, a practice that enables heart tissues to be collected at one site (e.g., vivarium) and transported to a laboratory in a separate location.


Asunto(s)
Soluciones Cardiopléjicas , Paro Cardíaco Inducido , Animales , Soluciones Cardiopléjicas/farmacología , Femenino , Corazón , Hemodinámica , Conejos , Estudios Retrospectivos
17.
Clin Transl Sci ; 14(4): 1600-1610, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955165

RESUMEN

Omecamtiv mecarbil (OM) is a myosin activator (myotrope), developed as a potential therapeutic agent for heart failure with reduced ejection fraction. To characterize the potential pro-arrhythmic risk of this novel sarcomere activator, we evaluated OM in a series of International Conference on Harmonization S7B core and follow-up assays, including an in silico action potential (AP) model. OM was tested in: (i) hERG, Nav1.5 peak, and Cav1.2 channel assays; (ii) in silico computation in a human ventricular AP (hVAP) population model; (iii) AP recordings in canine cardiac Purkinje fibers (PF); and (iv) electrocardiography analysis in isolated rabbit hearts (IRHs). OM had low potency in the hERG (half-maximal inhibitory concentration [IC50 ] = 125.5 µM) and Nav1.5 and Cav1.2 assays (IC50  > 300 µM). These potency values were used as inputs to investigate the occurrence of repolarization abnormalities (biomarkers of pro-arrhythmia) in an hVAP model over a wide range of OM concentrations. The outcome of hVAP analysis indicated low pro-arrhythmia risk at OM concentration up to 30 µM (100-fold the effective free therapeutic plasma concentration). In the isolated canine PF assay, OM shortened AP duration (APD)60 and APD90 significantly from 3 to 30 µM. In perfused IRH, ventricular repolarization (corrected QT and corrected JT intervals) was decreased significantly at greater than or equal to 1 µM OM. In summary, the comprehensive proarrhythmic assessment in human and non-rodent cardiac models provided data indicative that OM did not delay ventricular repolarization at therapeutic relevant concentrations, consistent with clinical findings.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Urea/análogos & derivados , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/inducido químicamente , Simulación por Computador , Perros , Evaluación Preclínica de Medicamentos , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Preparación de Corazón Aislado , Miocitos Cardíacos/efectos de los fármacos , Cultivo Primario de Células , Ramos Subendocárdicos , Conejos , Urea/administración & dosificación , Urea/efectos adversos
18.
Front Cardiovasc Med ; 8: 587149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708802

RESUMEN

Purpose: Doxorubicin-related heart failure has been recognized as a serious complication of cancer chemotherapy. This paper describes a cardiovascular safety pharmacology study with chronic dosing of doxorubicin in a non-human primate model designed to characterize the onset and magnitude of left ventricular dysfunction (LVD) using invasive and non-invasive methods. Methods: Cynomolgus monkeys (N = 12) were given repeated intravenous injections of doxorubicin over 135 days (19 weeks) with dosing holidays when there was evidence of significantly decreased hematopoiesis; a separate group (N = 12) received vehicle. Arterial and left ventricular pressure telemetry and cardiac imaging by echocardiography allowed regular hemodynamic assessments and determination of LVD. Blood samples were collected for hematology, clinical chemistry, and assessment of cardiac troponin (cTnI) and N-terminal pro b-type natriuretic peptide (NT-proBNP). Myocardial histopathology was a terminal endpoint. Results: There was variable sensitivity to the onset of treatment effects, for example 25% of doxorubicin-treated animals exhibited LVD (e.g., decreases in ejection fraction) following 50-63 days (cumulative dose: 8-9 mg/kg) on study. All animals deteriorated into heart failure with additional dosing 135 days (total cumulative dose: 11-17 mg/kg). Reductions in arterial pressure and cardiac contractility, as well as QTc interval prolongation, was evident following doxorubicin-treatment. Both cTnI and NT-proBNP were inconsistently higher at the end of the study in animals with LVD. Measurements collected from control animals were consistent and stable over the same time frame. Minimal to mild, multifocal, vacuolar degeneration of cardiomyocytes was observed in 7 of 12 animals receiving doxorubicin and 0 of 12 animals receiving vehicle. Conclusions: This repeat-dose study of doxorubicin treatment in the cynomolgus monkey demonstrated a clinically relevant pattern of progressive heart failure. Importantly, the study revealed how both telemetry and non-invasive echocardiography measurements could track the gradual onset of LVD.

19.
Clin Transl Sci ; 14(6): 2379-2390, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34173339

RESUMEN

The in vivo correct QT (QTc) assay is used by the pharmaceutical industry to characterize the potential for delayed ventricular repolarization and is a core safety assay mentioned in International Conference on Harmonization (ICH) S7B guideline. The typical telemetry study involves a dose-response analysis of QTc intervals over time using a crossover (CO) design. This method has proven utility but does not include direct integration of pharmacokinetic (PK) data. An alternative approach has been validated and is used routinely in the clinical setting that pairs pharmacodynamic (PD) responses with PK exposure (e.g., concentration-QTc (C-QTc) analysis. The goal of our paper was to compare the QTc sensitivity of two experimental approaches in the conscious dog and non-human primate (NHP) QTc assays. For timepoint analysis, a conventional design using eight animals (8 × 4 CO) to detect moxifloxacin-induced QTc prolongation was compared to a PK/PD design in a subset (N = 4) of the same animals. The findings demonstrate that both approaches are equally sensitive in detecting threshold QTc prolongation on the order of 10 ms. Both QTc models demonstrated linearity in the QTc prolongation response to moxifloxacin dose escalation (6 to 46 ms). Further, comparison with human QTc findings with moxifloxacin showed agreement and consistent translation across the three species: C-QTc slope values were 0.7- (dog) and 1.2- (NHP) fold of the composite human value. In conclusion, our data show that dog and NHP QTc telemetry with an integrated PK arm (C-QTc) has the potential to supplement clinical evaluation and improve integrated QTc risk assessment.


Asunto(s)
Síndrome de QT Prolongado/inducido químicamente , Moxifloxacino/administración & dosificación , Telemetría , Animales , Estudios Cruzados , Perros , Relación Dosis-Respuesta a Droga , Electrocardiografía , Primates
20.
Environ Health Perspect ; 129(9): 95001, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34558968

RESUMEN

BACKGROUND: The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES: We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS: An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS: The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION: These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carcinógenos , Contaminantes Ambientales/toxicidad , Sustancias Peligrosas/toxicidad , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA