Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(48): E10428-E10437, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133394

RESUMEN

The ability to propagate mature cells and tissue from pluripotent stem cells offers enormous promise for treating many diseases, including neurodegenerative diseases. Before such cells can be used successfully in neurodegenerative diseases without causing unwanted cell growth and migration, genes regulating growth and migration of neural stem cells need to be well characterized. Estrogen receptor beta (ERß) is essential for migration of neurons and glial cells in the developing mouse brain. To examine whether ERß influences differentiation of mouse embryonic stem cells (mESC) into neural lineages, we compared control and ERß knockout (BERKO) mESCs at defined stages of neural development and examined the effects of an ERß-selective ligand (LY3201) with a combination of global and targeted gene-expression profiling and the expression of key pluripotency markers. We found that ERß was induced in embryoid bodies (EBs) and neural precursor cells (NPCs) during development. Proliferation was higher in BERKO NPCs and was inhibited by LY3201. Neurogenesis was reduced in BERKO ES cells, and oligodendrogliogenesis was enhanced. BERKO EBs expressed higher levels of key ectodermal and neural progenitor markers and lower levels of markers for mesoderm and endoderm lineages. ERß-regulated factors are involved in cell adhesion, axon guidance, and signaling of Notch and GABA receptor pathways, as well as factors important for the differentiation of neuronal precursors into dopaminergic neurons (Engrailed 1) and for the oligodendrocyte fate acquisition (Olig2). Our data suggest that ERß is an important component for differentiation into midbrain neurons as well as for preventing precocious oligodendrogliogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Receptor beta de Estrógeno/fisiología , Mesencéfalo/fisiología , Células Madre Embrionarias de Ratones/fisiología , Células-Madre Neurales/fisiología , Regeneración/fisiología , Animales , Benzopiranos/farmacología , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Neuronas Dopaminérgicas/fisiología , Receptor beta de Estrógeno/agonistas , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/fisiología , Transducción de Señal/fisiología
2.
Mol Pharmacol ; 94(4): 1220-1231, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30115672

RESUMEN

Recent meta-analyses found an association between prenatal exposure to the antidepressant fluoxetine (FLX) and an increased risk of autism in children. This developmental disorder has been related to dysfunctions in the brains' rewards circuitry, which, in turn, has been linked to dysfunctions in dopaminergic (DA) signaling. The present study investigated if FLX affects processes involved in dopaminergic neuronal differentiation. Mouse neuronal precursors were differentiated into midbrain dopaminergic precursor cells (mDPCs) and concomitantly exposed to clinically relevant doses of FLX. Subsequently, dopaminergic precursors were evaluated for expression of differentiation and stemness markers using quantitative polymerase chain reaction. FLX treatment led to increases in early regional specification markers orthodenticle homeobox 2 (Otx2) and homeobox engrailed-1 and -2 (En1 and En2). On the other hand, two transcription factors essential for midbrain dopaminergic (mDA) neurogenesis, LIM homeobox transcription factor 1 α (Lmx1a) and paired-like homeodomain transcription factor 3 (Pitx3) were downregulated by FLX treatment. The stemness marker nestin (Nes) was increased, whereas the neuronal differentiation marker ß3-tubulin (Tubb3) decreased. Additionally, we observed that FLX modulates the expression of several genes associated with autism spectrum disorder and downregulates the estrogen receptors (ERs) α and ß Further investigations using ERß knockout (BERKO) mDPCs showed that FLX had no or even opposite effects on several of the genes analyzed. These findings suggest that FLX affects differentiation of the dopaminergic system by increasing production of dopaminergic precursors, yet decreasing their maturation, partly via interference with the estrogen system.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Fluoxetina/farmacología , Mesencéfalo/efectos de los fármacos , Animales , Trastorno del Espectro Autista/metabolismo , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Mesencéfalo/metabolismo , Ratones , Neurogénesis/efectos de los fármacos , Factores de Transcripción Otx/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo
3.
Sci Adv ; 10(4): eadj1354, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38266095

RESUMEN

The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Trastornos de la Memoria , Masculino , Femenino , Humanos , Animales , Ratones , Anciano , Colesterol 24-Hidroxilasa , Trastornos de la Memoria/etiología , Colesterol , Cognición , Enfermedad de Alzheimer/genética , Estrógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA