RESUMEN
Increased prevalence and abundance of Selenomonas sputigena have been associated with periodontitis, a chronic inflammatory disease of tooth-supporting tissues, for more than 50 years. Over the past decade, molecular surveys of periodontal disease using 16S and shotgun metagenomic sequencing approaches have confirmed the disease association of classically recognized periodontal pathogens such as Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia while highlighting previously underappreciated organisms such as Filifactor alocis and S. sputigena. Despite abundant clinical association between S. sputigena and periodontal disease, we have little to no understanding of its pathogenic potential, and virulence mechanisms have not been studied. In this study, we sought to characterize the response of gingival epithelial cells to infection with S. sputigena. Here, we show that S. sputigena attaches to gingival keratinocytes and induces expression and secretion of cytokines and chemokines associated with inflammation and leukocyte recruitment. We demonstrate that S. sputigena induces signaling through Toll-like receptor 2 (TLR2) and TLR4 but evades activation of TLR5. Cytokines released from S. sputigena-infected keratinocytes induced monocyte and neutrophil chemotaxis. These results show that S. sputigena-host interactions have the potential to contribute to bacterially driven inflammation and tissue destruction, the hallmark of periodontitis. Characterization of previously unstudied pathogens may provide novel approaches to develop therapeutics to treat or prevent periodontal disease.
Asunto(s)
Enfermedades Periodontales , Periodontitis , Humanos , Inflamación , Periodontitis/patología , Porphyromonas gingivalis/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismoRESUMEN
Periodontitis is a chronic inflammatory infectious disease that affects the integrity of tooth-supporting tissues and has adverse systemic consequences. Advances in sequencing technologies have uncovered organisms that are exclusively found in high numbers in periodontal lesions, such as the gram-positive anaerobic rod, Filifactor alocis. F. alocis can manipulate neutrophil effector functions, which allows the organism to survive within these granulocytes. Several neutrophil functions have been tested in the context of F. alocis challenge, but the effect of the organism on neutrophil apoptosis is still unknown. RNA sequencing of human neutrophils challenged with F. alocis showed that apoptosis pathways were differentially regulated. Compared to media-cultured controls, F. alocis-challenged neutrophils maintain their nuclear morphology, do not stain for Annexin V or 7-AAD, and have decreased DNA fragmentation. Inhibition of apoptosis by F. alocis involved reduced caspase-3, -8, and - 9 activation and upregulation of important anti-apoptotic proteins. Prolonged lifespan was dependent on contact through TLR2/6, and F. alocis-challenged neutrophils retained their functional capacity to induce inflammation for longer timepoints. This is the first in-depth characterization of neutrophil apoptotic programs in response to an oral pathogen and provides key information on how bacteria manipulate immune cell mechanisms to maintain a dysregulated inflammatory response.
Asunto(s)
Neutrófilos , Periodontitis , Clostridiales , Humanos , Longevidad , Neutrófilos/microbiología , Periodontitis/microbiologíaRESUMEN
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Neutrófilos/fisiología , Factores de Virulencia/metabolismo , Yersinia pestis/patogenicidad , Proteínas Bacterianas/genética , Degranulación de la Célula , Mutación con Ganancia de Función , Humanos , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Peste/inmunología , Vesículas Secretoras/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/genética , Yersinia pestis/genética , Yersinia pestis/metabolismoRESUMEN
Filifactor alocis is a newly appreciated pathogen in periodontal diseases. Neutrophils are the predominant innate immune cell in the gingival crevice. In this study, we examined modulation of human neutrophil antimicrobial functions by F. alocis. Both non-opsonised and serum-opsonised F. alocis were engulfed by neutrophils but were not efficiently eliminated. Challenge of neutrophils with either non-opsonised or serum-opsonised F. alocis induced a minimal intracellular as well as extracellular respiratory burst response compared to opsonised Staphylococcus aureus and fMLF, respectively. However, pretreatment or simultaneous challenge of neutrophils with F. alocis did not affect the subsequent oxidative response to a particulate stimulus, suggesting that the inability to trigger the respiratory response was only localised to F. alocis phagosomes. In addition, although neutrophils engulfed live or heat-killed F. alocis with the same efficiency, heat-killed F. alocis elicited a higher intracellular respiratory burst response compared to viable organisms, along with decreased surface expression of CD35, a marker of secretory vesicles. F. alocis phagosomes remained immature by delayed and reduced recruitment of specific and azurophil granules, respectively. These results suggest that F. alocis withstands neutrophil antimicrobial responses by preventing intracellular ROS production, along with specific and azurophil granule recruitment to the bacterial phagosome.
Asunto(s)
Clostridiales/inmunología , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Neutrófilos/inmunología , Células Cultivadas , Humanos , Viabilidad Microbiana , Neutrófilos/microbiología , Fagocitosis , Fagosomas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Estallido RespiratorioRESUMEN
Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.
Asunto(s)
Neutrófilos , Periodontitis , Clostridiales/inmunología , Disbiosis , Humanos , Microbiota/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Periodontitis/inmunología , Periodontitis/microbiología , Periodoncio/microbiologíaRESUMEN
The nucleolus serves as a principal site of ribosome biogenesis but is also implicated in various non-ribosomal functions, including negative regulation of the pro-apoptotic transcription factor p53. Although disruption of the nucleolus may trigger the p53-dependent neuronal death, neurotoxic consequences of a selective impairment of ribosome production are unclear. Here, we report that in rat forebrain neuronal maturation is associated with a remarkable expansion of ribosomes despite postnatal down-regulation of ribosomal biogenesis. In cultured rat hippocampal neurons, inhibition of the latter process by knockdowns of ribosomal proteins S6, S14, or L4 reduced ribosome content without disrupting nucleolar integrity, cell survival, and signaling responses to the neurotrophin brain-derived neurotrophic factor. Moreover, reduced general protein synthesis and/or formation of RNA stress granules suggested diminished ribosome recruitment to at least some mRNAs. Such a translational insufficiency was accompanied by impairment of brain-derived neurotrophic factor-mediated dendritic growth. Finally, RNA stress granules and smaller dendritic trees were also observed when ribosomal proteins were depleted from neurons with established dendrites. Thus, a robust ribosomal apparatus is required to carry out protein synthesis that supports dendritic growth and maintenance. Consequently, deficits of ribosomal biogenesis may disturb neurodevelopment by reducing neuronal connectivity. Finally, as stress granule formation and dendritic loss occur early in neurodegenerative diseases, disrupted homeostasis of ribosomes may initiate and/or amplify neurodegeneration-associated disconnection of neuronal circuitries.
Asunto(s)
Dendritas/metabolismo , Dendritas/ultraestructura , Prosencéfalo/crecimiento & desarrollo , Ribosomas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Regulación hacia Abajo , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Neuritas/metabolismo , Neuritas/ultraestructura , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Prosencéfalo/metabolismo , Prosencéfalo/ultraestructura , Biosíntesis de Proteínas , Ratas Sprague-Dawley , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/ultraestructuraRESUMEN
Filifactor alocis is a recently recognized periodontal pathogen; however, little is known regarding its interactions with the immune system. As the first-responder phagocytic cells, neutrophils are recruited in large numbers to the periodontal pocket, where they play a crucial role in the innate defense of the periodontium. Thus, in order to colonize, successful periodontal pathogens must devise means to interfere with neutrophil chemotaxis and activation. In this study, we assessed major neutrophil functions, including degranulation and cell migration, associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway upon challenge with F. alocis. Under conditions lacking a chemotactic gradient, F. alocis-challenged neutrophils had increased migration compared to uninfected cells, indicating that F. alocis increases chemokinesis in human neutrophils. In addition, neutrophil chemotaxis induced by interleukin-8 was significantly enhanced when cells were challenged with F. alocis, compared to noninfected cells. Similar to live bacteria, heat-killed F. alocis induced both random and directed migration of human neutrophils. The interaction of F. alocis with Toll-like receptor 2 induced granule exocytosis along with a transient ERK1/2 and sustained p38 MAPK activation. Moreover, F. alocis-induced secretory vesicle and specific granule exocytosis were p38 MAPK dependent. Blocking neutrophil degranulation with TAT-SNAP23 fusion protein significantly reduced the chemotactic and random migration induced by F. alocis Therefore, we propose that induction of random migration by F. alocis will prolong neutrophil traffic time in the gingival tissue, and subsequent degranulation will contribute to tissue damage.
Asunto(s)
Degranulación de la Célula/fisiología , Quimiotaxis/fisiología , Firmicutes/fisiología , Neutrófilos/fisiología , Movimiento Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Productos del Gen tat , Humanos , Proteínas Recombinantes de Fusión , Proteínas SNARE , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The present study evaluates anti-hyperglycemic activity of fractionated Momordica charantia (bitter gourd) seed extracts. Fasting blood glucose levels were evaluated before and after administration of different fractions of the seed extract. Among the three fractions tested, fraction Mc-3 (15 mg/kg b.wt.) showed the maximum anti-hyperglycemic activity and reduced blood glucose levels in experimental diabetic rats significantly. The activities of the key regulatory enzymes of glucose metabolism (hexokinase, pyruvate kinase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase) were determined in Mc-3-treated diabetic animals. Once-daily administration of the fraction Mc-3 for prolonged period of 18 days to the experimental diabetic animals did not result in any nephrotoxicity or hepatotoxicity as evident from insignificant changes in biochemical parameters indicative of liver and kidney functions. Further fractionation of the fraction Mc-3 by size exclusion chromatography resulted in a fraction, designated Mc-3.2, possessing anti-hyperglycemic activity. The fraction Mc-3.2 showed the presence of a predominant protein band of ~11 kDa on SDS-PAGE. Loss in anti-hyperglycemic activity of the Mc-3.2 upon protease treatment indicates the proteinaceous nature of the anti-hyperglycemic principles. Overall, the results suggest that Momordica charantia seeds contain an effective anti-hyperglycemic protein(s) which may find application in treatment of diabetes without evident toxic effects.
RESUMEN
Neutrophils play a significant role in determining disease severity following SARS-CoV-2 infection. Gene and protein expression defines several neutrophil clusters in COVID-19, including the emergence of low density neutrophils (LDN) that are associated with severe disease. The functional capabilities of these neutrophil clusters and correlation with gene and protein expression are unknown. To define host defense and immunosuppressive functions of normal density neutrophils (NDN) and LDN from COVID-19 patients, we recruited 64 patients with severe COVID-19 and 26 healthy donors (HD). Phagocytosis, respiratory burst activity, degranulation, neutrophil extracellular trap (NET) formation, and T-cell suppression in those neutrophil subsets were measured. NDN from severe/critical COVID-19 patients showed evidence of priming with enhanced phagocytosis, respiratory burst activity, and degranulation of secretory vesicles and gelatinase and specific granules, while NET formation was similar to HD NDN. COVID LDN response was impaired except for enhanced NET formation. A subset of COVID LDN with intermediate CD16 expression (CD16Int LDN) promoted T cell proliferation to a level similar to HD NDN, while COVID NDN and the CD16Hi LDN failed to stimulate T-cell activation. All 3 COVID-19 neutrophil populations suppressed stimulation of IFN-γ production, compared to HD NDN. We conclude that NDN and LDN from COVID-19 patients possess complementary functional capabilities that may act cooperatively to determine disease severity. We predict that global neutrophil responses that induce COVID-19 ARDS will vary depending on the proportion of neutrophil subsets.
Asunto(s)
COVID-19 , Trampas Extracelulares , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo , Estallido Respiratorio , SARS-CoV-2RESUMEN
The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is essential for lysosomal evasion and permissiveness of macrophages for intracellular proliferation of the pathogen. In contrast, we show that polymorphonuclear cells (PMNs) respond to a functional Dot/Icm system through rapid restriction of L. pneumophila. Specifically, we show that the L. pneumophila T4SS-injected amylase (LamA) effector catalyzes rapid glycogen degradation in the PMNs cytosol, leading to cytosolic hyperglucose. Neutrophils respond through immunometabolic reprogramming that includes upregulated aerobic glycolysis. The PMNs become activated with spatial generation of intracellular reactive oxygen species within the Legionella-containing phagosome (LCP) and fusion of specific and azurophilic granules to the LCP, leading to rapid restriction of L. pneumophila. We conclude that in contrast to macrophages, PMNs respond to a functional Dot/Icm system, and specifically to the effect of the injected amylase effector, through rapid engagement of major microbicidal processes and rapid restriction of the pathogen. IMPORTANCE Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires' disease. In addition to alveolar macrophages, neutrophils infiltrate into the lungs of infected patients. Unlike alveolar macrophages, neutrophils restrict and kill L. pneumophila, but the mechanisms were previously unclear. Here, we show that the pathogen secretes an amylase (LamA) enzyme that rapidly breakdowns glycogen stores within neutrophils, and this triggers increased glycolysis. Subsequently, the two major killing mechanisms of neutrophils, granule fusion and production of reactive oxygen species, are activated, resulting in rapid killing of L. pneumophila.
Asunto(s)
Legionella pneumophila/inmunología , Neutrófilos/microbiología , Sistemas de Secreción Tipo IV/inmunología , Proteínas Bacterianas/metabolismo , Citosol/microbiología , Glucógeno/metabolismo , Glucólisis , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Fagosomas/inmunología , Fagosomas/microbiología , Especies Reactivas de Oxígeno/inmunología , Sistemas de Secreción Tipo IV/genéticaRESUMEN
During cortical development, when NR2B subunit is the major component of the NMDA glutamate receptors (NMDARs), moderate NMDAR activity supports neuronal survival at least in part by regulating gene transcription. We report that, in cultured cortical neurons from newborn rats, the NMDARs activated the calcium-responsive transcription regulator nuclear factor of activated T cells (NFAT). Moreover, in developing rat cortex, the NFAT isoforms c3 and c4 (NFATc3 and NFATc4) were expressed at relatively higher levels at postnatal day 7 (P7) than P21, overlapping with the period of NMDAR-dependent survival. In cultured cortical neurons, NFATc3 and NFATc4 were regulated at least in part by the NR2B NMDAR. Conversely, knockdown of NFATc4 but not NFATc3 induced cortical neuron apoptosis. Likewise, NFATc4 inhibition prevented antiapoptotic neuroprotection in response to exogenous NMDA. Expression of the brain-derived neurotrophic factor (BDNF) was reduced by NFATc4 inhibition. NFATc4 regulated transcription by the NMDAR-responsive bdnf promoter IV. In addition, NMDAR blockers including NR2B-selective once reduced BDNF expression in P7 cortex and cultured cortical neurons. Finally, exogenous BDNF rescued from the proapoptotic effects of NFATc4 inhibition. These results identify bdnf as one of the target genes for the antiapoptotic signaling by NMDAR-NFATc4. Thus, the previously unrecognized NMDAR-NFATc4-BDNF pathway contributes to the survival signaling network that supports cortical development.
Asunto(s)
Apoptosis/fisiología , Corteza Cerebral/citología , Factores de Transcripción NFATC/metabolismo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , GABAérgicos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Masculino , Factores de Transcripción NFATC/genética , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Transfección/estadística & datos numéricosRESUMEN
Although DNA damage-induced neurotoxicity is implicated in various pathologies of the nervous system, its underlying mechanisms are not completely understood. Transcription is a DNA transaction that is highly active in the nervous system. In addition to its direct role in expression of the genetic information, transcription contributes to DNA damage detection and repair as well as chromatin organization including biogenesis of the nucleolus. Transcription is inhibited by DNA single-strand breaks and DNA adducts. Hence, transcription inhibition may be an important contributor to the neurotoxic consequences of such types of DNA damage. This review discusses the existing evidence in support of the latter hypothesis. The presented literature suggests that neuronal DNA damage interferes with the RNA-Polymerase-2-dependent transcription of genes encoding proteins with critical functions in neurotransmission and intracellular signaling. The latter category includes extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphatases whose lowered expression results in chronic activation of extracellular signal-regulated kinase-1/2 and its reduced responsiveness to physiological stimuli. Conversely, DNA damage-induced inhibition of RNA-Polymerase-1 and the subsequent disruption of the nucleolus induce p53-mediated apoptosis of developing neurons. Finally, decreasing nucleolar transcription may link DNA damage to chronic neurodegeneration in adults.
Asunto(s)
Daño del ADN , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Transcripción Genética , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Apoptosis , Nucléolo Celular/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Degeneración Nerviosa/genética , Sistema Nervioso/citología , Neuronas/citología , Transducción de Señal/genética , Transmisión Sináptica/genéticaRESUMEN
Periodontitis is an irreversible, bacteria-induced, chronic inflammatory disease that compromises the integrity of tooth-supporting tissues and adversely affects systemic health. As the immune system's first line of defense against bacteria, neutrophils use their microbicidal functions in the oral cavity to protect the host against periodontal disease. However, periodontal pathogens have adapted to resist neutrophil microbicidal mechanisms while still propagating inflammation, which provides essential nutrients for the bacteria to proliferate and cause disease. Advances in sequencing technologies have recognized several newly appreciated bacteria associated with periodontal lesions such as the Gram-positive anaerobic rod, Filifactor alocis. With the discovery of these oral bacterial species, there is also a growing need to assess their pathogenic potential and determine their contribution to disease progression. Currently, few studies have addressed the pathogenic mechanisms used by oral bacteria to manipulate the neutrophil functional responses at the level of the transcriptome. Thus, this study aims to characterize the global changes at the gene expression level in human neutrophils during infection with F. alocis. Our results indicate that the challenge of human neutrophils with F. alocis results in the differential expression of genes involved in multiple neutrophil effector functions such as chemotaxis, cytokine and chemokine signaling pathways, and apoptosis. Moreover, F. alocis challenges affected the expression of components from the TNF and MAPK kinase signaling pathways. This resulted in transient, dampened p38 MAPK activation by secondary stimuli TNFα but not by fMLF. Functionally, the F. alocis-mediated inhibition of p38 activation by TNFα resulted in decreased cytokine production but had no effect on the priming of the respiratory burst response or the delay of apoptosis by TNFα. Since the modulatory effect was characteristic of viable F. alocis only, we propose this as one of F. alocis' mechanisms to control neutrophils and their functional responses.
Asunto(s)
Clostridiales/inmunología , Neutrófilos/fisiología , Periodontitis/inmunología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Humanos , Estallido Respiratorio , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Periodontitis is a highly prevalent infectious disease that affects ~ 50% of the adults in the USA alone. Two Gram-positive anaerobic oral bacteria, Filifactor alocis and Peptoanaerobacter stomatis, have emerged as important periodontal pathogens. Neutrophils are a major component of the innate host response in the gingival tissue, and the contribution of neutrophil-derived cytokines and chemokines plays a central role in disease progression. The pattern of cytokines and chemokines released by human neutrophils upon stimulation with newly appreciated periodontal bacteria compared to the keystone oral pathogen Porphyromonas gingivalis was investigated. Our results showed that both F. alocis and P. stomatis triggered TLR2/6 activation. F. alocis induced significant changes in gene expression of cytokines and chemokines in human neutrophils compared to unstimulated cells. However, except for IL-1ra, neutrophils released lower levels of cytokines and chemokines in response to F. alocis compared to P. stomatis. Furthermore, bacteria-free conditioned supernatant collected from neutrophils challenged with P. stomatis, but not from P. gingivalis or F. alocis, was chemotactic towards both neutrophils and monocytes. Elucidating stimuli-specific modulation of human neutrophil effector functions in the context of dysbiotic microbial community constituents provides valuable information for understanding the pathogenesis of periodontal diseases.
RESUMEN
The mechanism(s) underlying neurodegeneration-associated activation of ERK1/2 remain poorly understood. We report that in cultured rat cortical neurons, whose basal ERK1/2 phosphorylation required NMDA receptors (NMDAR), the neurotoxic DNA intercalating drug cisplatin increased ERK1/2 phosphorylation via NMDAR despite reducing their activity. The rate of ERK1/2 dephosphorylation was lowered by cisplatin. Cisplatin-treated neurons showed general transcription inhibition likely accounting for the reduced expression of the ERK1/2-selective phosphatases including the dual specificity phosphatase-6 (DUSP6) and the DUSP3 activator vaccinia-related kinase-3 (VRK3). Hence, cisplatin effects on ERK1/2 may be due to the deficient ERK1/2 inhibition by the transcription-regulated phosphatases. Indeed, the transcription inhibitor actinomycin D reduced expression of DUSP6 and VRK3 while inducing the NMDAR-dependent activation of ERK1/2 and the impairment of ERK1/2 dephosphorylation. Thus, cisplatin-mediated transcriptional inhibition of ERK1/2 phosphatases contributed to delayed and long lasting accumulation of phospho-ERK1/2 that was driven by the basal NMDAR activity. Our results provide the first direct evidence for transcriptionally-regulated inactivation of neuronal ERK1/2. Its disruption likely contributes to neurodegeneration-associated activation of ERK1/2.
Asunto(s)
Cisplatino/toxicidad , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/enzimología , Activación Transcripcional/genética , Animales , Animales Recién Nacidos , Antineoplásicos/toxicidad , Células Cultivadas , Fosfatasa 6 de Especificidad Dual/efectos de los fármacos , Fosfatasa 6 de Especificidad Dual/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/toxicidad , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Activación Transcripcional/efectos de los fármacosRESUMEN
Expression and secretion of procathepsin D (pCD) increases proliferation, metastasis and progression of breast cancer but the structural moiety by which pCD exerts these effects is still ambiguous. Here, we present data on a series of pCD stable mutants to identify the pCD region that mediates this mitogenic effect. Mutations affecting the region of the activation peptide (AP) were studied together with catalytic and glycosylation mutants. Mitogenic effect was evaluated using in vitro invasion and proliferation assays and in vivo by determining the tumorigenic potential. The catalytic mutants and glycosylation mutants of pCD continued to display enhanced cell proliferation, invasion and tumorigenicity similar to stable transfectants of native pCD, suggesting that neither the proteolytic activity nor the sugar moieties contribute to the mitogenic effect. However, stable transfectants of pCD lacking its AP and with various mutations in the 27-44 amino acid region of AP, failed to show enhanced cell proliferation or invasion in vitro and tumor growth in vivo, establishing the importance of AP region. Our study concludes that the entire 27-44 amino acid region of AP is necessary for the stimulatory actions of pCD on breast cancer cells.
Asunto(s)
Neoplasias de la Mama/patología , Catepsina D/fisiología , Precursores Enzimáticos/fisiología , Regulación Neoplásica de la Expresión Génica , Animales , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Genéticos , Invasividad Neoplásica , Metástasis de la Neoplasia , TransfecciónRESUMEN
Human MDA-MB-231 derived breast cancer cell lines 1833 and 4175 have different metastatic potentials in terms of their tissue tropisms and aggressiveness. Cell line 1833 is specifically metastatic to the bone. The highly aggressive cell line 4175 is specific to the lung. We performed 2-DE analysis of the cell lines. We found 16 significantly changed protein spots, 14 protein spots were identified. Expression of cathepsin D, triosephosphate isomerase, phosphoglycerate kinase 1, heme binding protein 1 and annexin 2 could be correlated with the in vitro aggressiveness of the respective cell lines. Interstitial collagenase and dimethylargininase 2 were exclusive to the cell line 1833 and might contribute to its bone specificity. Serpin B9, cathepsin B chain b, galectin 3 and HSP 27 were changed in the lung specific cell line 4175. The possible contribution of identified proteins to differences in metastatic behavior of the cell lines is discussed.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Electroforesis en Gel Bidimensional/métodos , Regulación Neoplásica de la Expresión Génica , Catepsina D/biosíntesis , Línea Celular Tumoral , Colagenasas/biosíntesis , Femenino , Perfilación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas/métodos , Invasividad Neoplásica , Metástasis de la Neoplasia , Péptidos/químicaRESUMEN
Neutrophils operate at the site of injury or inflammation in the periodontal pocket to ensure periodontal health and clearance of bacterial pathogens. Filifactor alocis is recently identified as a potential periodontal pathogen, and in this study, we assessed the formation of neutrophil extracellular traps (NETs), in response to the presence of the organism . NET formation by human neutrophils was not induced when challenged with F. alocis, independent of opsonization, viability, time, or bacterial dose. F. alocis also failed to induce NETs from TNF-α-primed neutrophils and did not induce the release of extracellular neutrophil elastase. However, significant NET induction was observed when neutrophils were challenged with Streptococcus gordonii or Peptoanaerobacter stomatis, In addition, co-infection studies revealed that the presence of F. alocis with S. gordonii or P. stomatis does not enhance or reduce NETs. Additionally, F. alocis failed to impact pre-formed NETs induced by either S. gordonii or P. stomatis. Pretreatment with F. alocis prior to stimulation with phorbol 12-myristate 13-acetate (PMA), S. gordonii, or P. stomatis revealed that the bacterium is capable of reducing only PMA but not S. gordonii or P. stomatis NET formation. These results indicate that F. alocis manipulates neutrophils, inhibiting the triggering of NET induction.
Asunto(s)
Trampas Extracelulares/inmunología , Bacterias Grampositivas , Neutrófilos/inmunología , Neutrófilos/microbiología , Trampas Extracelulares/efectos de los fármacos , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Neutrófilos/ultraestructura , Periodontitis/inmunología , Periodontitis/microbiología , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Ribosome biogenesis, including the RNA polymerase 1 (Pol1)-mediated transcription of rRNA, is regulated by the pro-epileptogenic mTOR pathway. Therefore, hippocampal Pol1 activity was examined in mouse models of epilepsy including kainic acid- and pilocarpine-induced status epilepticus (SE) as well as a single seizure in response to pentylenetetrazole (PTZ). Elevated 47S pre-rRNA levels were present acutely after induction of SE suggesting activation of Pol1. Conversely, after a single seizure, 47S pre-rRNA was transiently downregulated with increased levels of unprocessed 18S rRNA precursors in the cornu Ammonis (CA) region. At least in the dentate gyrus (DG), the pilocarpine SE-mediated transient activation of Pol1 did not translate into long-term changes of pre-rRNA levels or total ribosome content. Unaltered hippocampal ribosome content was also found after a 20-day PTZ kindling paradigm with increasing pro-convulsive effects of low dose PTZ that was injected every other day. However, after selectively deleting the essential Pol1 co-activator, transcription initiation factor-1A (Tif1a/Rrn3) from excitatory neurons, PTZ kindling was impaired while DG total ribosome content was moderately reduced and no major neurodegeneration was observed throughout the hippocampus. Therefore, Pol1 activity of excitatory neurons is required for PTZ kindling. As seizures affect ribosome biogenesis without long-term effects on the total ribosome content, such a requirement may be associated with a need to produce specialized ribosomes that promote pro-epileptic plasticity.
Asunto(s)
Epilepsia/enzimología , Epilepsia/fisiopatología , Excitación Neurológica/metabolismo , ARN Polimerasa I/metabolismo , Convulsiones/enzimología , Convulsiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Epilepsia/patología , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Pentilenotetrazol , Pilocarpina , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Convulsiones/patología , Estado Epiléptico/metabolismoRESUMEN
While impaired ribosomal biogenesis is observed in neurodegenerative diseases, its pathogenic contributions are not clear. For instance, it is well established that in rodent neurons, genetic inhibition of RNA-polymerase 1 that transcribes rRNA results in structural disruption of the nucleolus, neuronal apoptosis, and neurodegeneration. However, in most neurodegenerative diseases, nucleolar morphology is unaffected. It is reported here that in primary cortical neurons from newborn rats, inhibition of ribosomal biogenesis by shRNA-mediated knockdowns of several ribosomal proteins including S6, S14, or L4 resulted in p53-mediated apoptosis despite absence of structural disruption of the nucleolus. Conversely, knockdown of the RP L11, which in nonneuronal systems mediates p53 activation downstream of ribosomal stress, protected neurons against inhibition of ribosomal biogenesis but not staurosporine. Moreover, overexpression of L11 enhanced p53-driven transcription and increased neuronal apoptosis. In addition, inhibition of p53, or L11 knockdown, blocked apoptosis in response to the RNA analog 5-fluorouridine which perturbed nucleolar structure, inhibited ribosomal synthesis, and activated p53. Although the DNA double-strand break (DSB) inducer etoposide activated p53, nucleolar structure appeared intact. However, by activating the DNA damage response kinase ATM, etoposide increased 47S pre-rRNA levels, and enhanced nucleolar accumulation of nascent RNA, suggesting slower rRNA processing and/or increased Pol1 activity. In addition, shL11 reduced etoposide-induced apoptosis. Therefore, seemingly normal morphology of the neuronal nucleolus does not exclude presence of ribosomal stress. Conversely, targeting the ribosomal stress-specific signaling mediators including L11 offers a novel approach to uncover neurodegenerative contributions of deregulated ribosomal synthesis as exemplified in DSB-challenged neurons.