Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(5): e63542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38234180

RESUMEN

Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.


Asunto(s)
Segmento Anterior del Ojo , Anomalías del Ojo , Enfermedades Hereditarias del Ojo , Proteína del Homeodomínio PITX2 , Femenino , Humanos , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Factores de Transcripción Forkhead/genética , Proteínas de Homeodominio/genética
2.
Mol Cell ; 59(6): 904-16, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26344096

RESUMEN

SPOP mutations and TMPRSS2-ERG rearrangements occur collectively in up to 65% of human prostate cancers. Although the two events are mutually exclusive, it is unclear whether they are functionally interrelated. Here, we demonstrate that SPOP, functioning as an E3 ubiquitin ligase substrate-binding protein, promotes ubiquitination and proteasome degradation of wild-type ERG by recognizing a degron motif at the N terminus of ERG. Prostate cancer-associated SPOP mutations abrogate the SPOP-mediated degradation function on the ERG oncoprotein. Conversely, the majority of TMPRSS2-ERG fusions encode N-terminal-truncated ERG proteins that are resistant to the SPOP-mediated degradation because of degron impairment. Our findings reveal degradation resistance as a previously uncharacterized mechanism that contributes to elevation of truncated ERG proteins in prostate cancer. They also suggest that overcoming ERG resistance to SPOP-mediated degradation represents a viable strategy for treatment of prostate cancers expressing either mutated SPOP or truncated ERG.


Asunto(s)
Proteínas Nucleares/fisiología , Proteínas de Fusión Oncogénica/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/fisiología , Transactivadores/fisiología , Secuencia de Aminoácidos , Proliferación Celular , Puntos de Rotura del Cromosoma , Células HEK293 , Humanos , Masculino , Fragmentos de Péptidos/fisiología , Neoplasias de la Próstata/metabolismo , Unión Proteica , Proteolisis , Regulador Transcripcional ERG , Ubiquitinación
3.
Dig Dis Sci ; 67(8): 3797-3805, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34773565

RESUMEN

BACKGROUND: FGFR2 genomic alterations are observed in 10-20% of cholangiocarcinoma (CCA). Although FGFR2 fusions are an important actionable target, FGFR2 protein expression has not been thoroughly characterized. AIMS: To evaluate FGFR2 protein expression in cholangiocarcinoma harboring FGFR2 genomic alterations. METHODS: FGFR2 protein expression was evaluated in 99 CCA cases with two different antibodies. FGFR2 genomic alterations were confirmed via next-generating sequencing (NGS) or FISH. Primary objective was to determine the specificity and sensitivity of FGFR2 immunohistochemistry staining for detecting FGFR2 genomic alterations. Secondary objectives included overall FGFR2 immunohistochemistry staining in CCA patients, and evaluation of whether FGFR2 expression correlates with clinical outcomes including overall survival (OS), progression-free survival (PFS), and time-to-tumor recurrence (TTR). RESULTS: Immunohistochemistry staining with two antibodies against FGFR2, FPR2-D, and clone 98706 showed high accuracy (78.7% and 91.9%) and specificity (82.9% and 97.7%), and moderate sensitivity (53.9% and 57.1%), respectively, when compared with the standard methods for detecting FGFR2 genomic alterations. In a median follow-up of 72 months, there were no statistically significant differences in OS, PFS, and TTR, for patients with positive or negative FGFR2 staining. CONCLUSION: FGFR2 protein expression by immunohistochemistry has high specificity and therefore could be used to imply the presence of FGFR2 genomic alterations in the context of a positive test. In the case of a negative test, NGS or FISH would be necessary to ascertain cases with FGFR2 genomic alterations.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Genómica , Humanos , Inmunohistoquímica , Recurrencia Local de Neoplasia/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
4.
Ann Diagn Pathol ; 58: 151942, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344861

RESUMEN

Rearrangement of the EWSR1 gene (22q12.2) is a well-recognized genetic lesion in bone and soft tissue tumors. However, few reports have suggested that EWSR1 rearrangements may also occur in the setting of hematopoietic tumors. We herein describe two cases of immature hematopoietic neoplasms presenting with EWSR1 rearrangements. The first occurred in a 41-year-old female diagnosed with mixed-phenotype acute leukemia, B/T/myeloid, in which conventional chromosome analysis revealed a t(2;22)(q35;q12). Further analysis with whole genome sequencing revealed that this rearrangement led to an EWSR1::FEV gene fusion. The second case was identified in an 18-year-old male with a high-grade B-cell lineage malignant neoplasm with immature features in which conventional chromosome analysis revealed a t(17;22)(q25;q12). Mate-pair sequencing, a next generation sequencing-based assay, was performed and revealed three in-frame chimeric gene fusions involving the EWSR1, TEF and STRADA gene regions. This report further expands the repertoire of hematopoietic neoplasms with EWSR1 fusions and partner genes involved in these rearrangements.


Asunto(s)
Neoplasias Hematológicas , Neoplasias de los Tejidos Blandos , Femenino , Fusión Génica , Reordenamiento Génico , Neoplasias Hematológicas/genética , Humanos , Masculino , Proteínas de Fusión Oncogénica/genética , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Neoplasias de los Tejidos Blandos/patología
5.
Genes Chromosomes Cancer ; 60(2): 108-111, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078871

RESUMEN

Acute undifferentiated leukemia (AUL) is a very rare hematologic neoplasm that expresses no markers specific for either myeloid or lymphoid lineages. While commonly observed in several acute leukemias, KMT2A rearrangements in AUL have been rarely reported in the literature. We report the third case to our knowledge of AUL harboring a KMT2A rearrangement. Furthermore, the KMT2A/GIMAP8 gene fusion identified in this case represents a novel KMT2A rearrangement.


Asunto(s)
GTP Fosfohidrolasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Bifenotípica Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Niño , Humanos , Leucemia Bifenotípica Aguda/patología , Masculino
6.
J Cell Mol Med ; 25(8): 4110-4123, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33704908

RESUMEN

A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment-naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome-wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome-wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Aberraciones Cromosómicas , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos , Mutación , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma
7.
Ann Diagn Pathol ; 53: 151761, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33991782

RESUMEN

The t(5;14)(q31.1;q32.1) associated with B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) is a rare, recurrent genetic abnormality recognized as a distinct entity by the 2017 World Health Organization (WHO) classification. In these cases, the IGH enhancer region (14q32.1) is juxtaposed to the vicinity of the IL3 gene (5q31.1), resulting in increased production of interleukin-3 (IL3) and subsequently a characteristic reactive eosinophilia. B-ALL with t(5;14)(q31.1;q32.1) may have a low lymphoblast count that can complicate detection of t(5;14)(q31.1;q32.1) by conventional chromosome studies. We have identified four patients with IGH/IL3 rearrangements despite normal conventional chromosome studies in each case [one patient had a non-clonal t(5;14)(q31;q32) finding]. Fluorescence in situ hybridization utilizing a laboratory-developed IGH break-apart probe set identified IGH rearrangements in three of four cases, and a next generation sequencing (NGS) based assay, mate-pair sequencing (MPseq), was required to characterize the IGH/IL3 rearrangements in each case. Three patients demonstrated a balanced t(5;14)(q31.1;q32.1) while one patient had a cryptic insertion of the IL3 gene into the IGH region. These results demonstrate that NGS-based assays, such as MPseq, confer an advantage in the detection of IGH/IL3 rearrangements that are otherwise challenging to characterize by traditional cytogenetic methodologies.


Asunto(s)
Reordenamiento Génico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interleucina-3/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Biopsia con Aguja/métodos , Médula Ósea/patología , Niño , Cromosomas Humanos Par 14 , Citogenética/métodos , Eosinofilia/inmunología , Femenino , Humanos , Hibridación Fluorescente in Situ/métodos , Cariotipo , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Translocación Genética , Adulto Joven
8.
Genomics ; 112(6): 5313-5323, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33144219

RESUMEN

Intraoperative diagnosis is routinely performed on cytology touch preparations (TPs) from core needle biopsies (CNBs). Current interest promotes their utility as an important source of patient tissue for clinical genomic testing. Herein we present whole genome structural variant analysis (SVA) from mate-pair sequencing (MPseq) and whole exome sequencing (WES) mutation calling in DNA directly whole genome amplified (WGA) from TPs. Chromosomal copy changes and somatic DNA junction detection from MPseq of TPs were highly consistent with associated CNBs and bulk resected tissues in all cases. While increased frequency coverage noise from limitations of amplification of limited sample input was significant, this was effectively compensated by natural tumor enrichment during the TP process, which also enhanced variant detection and loss of heterozygosity evaluations from WES. This novel TP methodology enables expanded utility of frequently limited CNB for both clinical and research genomic testing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Análisis de Secuencia de ADN , Alelos , Biopsia con Aguja Gruesa , Técnicas Citológicas , Genómica/métodos , Humanos , Pérdida de Heterocigocidad , Neoplasias/patología , Secuenciación del Exoma
9.
Genes Chromosomes Cancer ; 59(7): 422-427, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32196814

RESUMEN

Infant leukemias are a rare group of neoplasms that are clinically and biologically distinct from their pediatric and adult counterparts. Unlike leukemia in older children where survival rates are generally favorable, infants with leukemia have a 5-year event-free survival rate of <50%. The majority of infant leukemias are characterized by KMT2A (MLL) rearrangements (~70 to 80% in acute lymphoblastic leukemia), which appear to be drivers of early leukemogenesis. In this report, we describe three cases: a 9-month-old female infant with B-acute lymphoblastic leukemia (B-ALL), an 8-month-old female presenting with B/myeloid mixed phenotype acute leukemia (MPAL), and a 16-month-old male with B-ALL. The first case had a normal karyotype and B-ALL FISH results consistent with an atypical KMT2A rearrangement. The second case had trisomy 10 as the sole chromosomal abnormality and a normal KMT2A FISH result. Case 3 had trisomy 8 and a t(11;15)(q23;q21), an atypical KMT2A rearrangement by FISH studies, and a focal deletion of 15q with a breakpoint within the USP8 gene by chromosomal microarray. Mate pair sequencing was performed on all three cases and identified a KMT2A-USP2 rearrangement (cases 1 and 2) or a KMT2A-USP8 rearrangement (case 3). These recently characterized KMT2A fusions have been described exclusively in infant and pediatric leukemia cases where the incidence varies vary according to leukemia subtype, are considered high-risk, with a high incidence of central nervous system involvement, poor response to initial prednisone treatment, and poor event free survival. Additionally, approximately half of cases are unable to be resolved using standard cytogenetic approaches and are likely under recognized. Therefore, targeted molecular approaches are suggested in genetically unresolved infant leukemia cases to characterize these prognostically relevant clones.


Asunto(s)
Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ubiquitina Tiolesterasa/genética
10.
Blood ; 132(24): 2564-2574, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30257881

RESUMEN

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular proliferation and metabolism. Depending on its binding partners, mTOR is at the core of 2 complexes that either promote protein biosynthesis (mTOR complex 1; mTORC1) or provide survival and proliferation signals (mTORC2). Protein biosynthesis downstream of mTORC1 plays an important role in MYC-driven oncogenesis with translation inhibitors garnering increasing therapeutic attention. The germinal center B-cell oncogene UCHL1 encodes a deubiquitinating enzyme that regulates the balance between mTOR complexes by disrupting mTORC1 and promoting mTORC2 assembly. While supporting mTORC2-dependent growth and survival signals may contribute to its role in cancer, the suppression of mTORC1 activity is enigmatic, as its phosphorylation of its substrate 4EBP1 promotes protein biosynthesis. To address this, we used proximity-based proteomics to identify molecular complexes with which UCH-L1 associates in malignant B cells. We identified a novel association of UCH-L1 with the translation initiation complex eIF4F, the target of 4EBP1. UCH-L1 associates with and promotes the assembly of eIF4F and stimulates protein synthesis through a mechanism that requires its catalytic activity. Because of the importance of mTOR in MYC-driven oncogenesis, we used novel mutant Uchl1 transgenic mice and found that catalytic activity is required for its acceleration of lymphoma in the Eµ-myc model. Further, we demonstrate that mice lacking UCH-L1 are resistant to MYC-induced lymphomas. We conclude that UCH-L1 bypasses the need for mTORC1-dependent protein synthesis by directly promoting translation initiation, and that this mechanism may be essential for MYC in B-cell malignancy.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Linfoma de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Linfoma de Células B/genética , Linfoma de Células B/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Fosforilación , Serina-Treonina Quinasas TOR/genética , Ubiquitina Tiolesterasa/genética
11.
Ann Diagn Pathol ; 46: 151533, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32408254

RESUMEN

The accurate detection of recurrent genetic abnormalities for most hematologic neoplasms is critical for diagnosis, prognosis and/or treatment. Rearrangements involving CCND1 are observed in a subset of mature B-cell neoplasms and can be reliably detected by fluorescence in situ hybridization (FISH) in most cases. However, cryptic and complex chromosomal rearrangements may pose a technical challenge for accurate diagnosis. Herein, we describe two patients with suspected mantle cell lymphoma that lacked obvious CCND1 rearrangements by FISH studies. A next generation sequencing (NGS) based assay, mate-pair sequencing (MPseq), was utilized in each case to investigate potential cryptic CCND1 rearrangements and revealed cryptic insertional events resulting in CCND1/IGH and CCND1/IGK rearrangements. These cases demonstrate that NGS-based assays, including MPseq, are a powerful approach to identify cryptic rearrangements of clinical importance that are not detected by current clinical genomics evaluation.


Asunto(s)
Ciclina D1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Linfoma de Células del Manto/genética , Análisis de Secuencia de ADN/métodos , Anciano , Anciano de 80 o más Años , Femenino , Reordenamiento Génico/genética , Humanos
12.
Genes Chromosomes Cancer ; 58(8): 567-577, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30707474

RESUMEN

The MLLT10 (formerly AF10) gene is the fourth most common KMT2A fusion partner across all acute leukemias and requires at least 3 breaks to form an in-frame KMT2A/MLLT10 fusion due to the opposite orientation of each gene. A 10-year retrospective review was performed to identify individuals from all age groups that harbor KMT2A/MLLT10 fusion obtained by our KMT2A/MLLT10 dual-color dual-fusion fluorescence in situ hybridization (D-FISH) assay. Of the 60 unique individuals identified, 31 were male and 29 were female (M:F ratio, 1.1:1) with ages ranging from 3 days to 86 years (mean 21.5 years, median 5.5 years). The diagnoses included acute myeloid leukemia (AML) (49 patients, 82%), B- or T-lymphoblastic leukemia/lymphoma (7 patients, 12%), myeloid sarcoma (3 patients, 5%), and a single case (2%) of undifferentiated leukemia. Twenty-seven of 49 patients (55%) with AML were in the infant or pediatric age group. Fifty-three of 60 patients (88%) had KMT2A/MLLT10 D-FISH signal patterns mostly consisting of single fusions. In addition, 10 (26%) of 38 patients with conventional chromosome studies had "normal" (5 patients) or abnormal (5 patients) chromosome studies that lacked structural or numeric abnormalities involving chromosomes 10 or 11, implying cryptic cytogenetic mechanisms for KMT2A/MLLT10 fusion. Lastly, mate-pair sequencing was performed on 4 AML cases, 2 of which had "normal" chromosome studies and cryptic KMT2A/MLLT10 fusion as detected by KMT2A/MLLT10 D-FISH studies, and verified the multiple breaks required to generate KMT2A/MLLT10 fusion.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción/genética , Biomarcadores de Tumor , Biopsia , Mapeo Cromosómico , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
13.
Bioinformatics ; 34(10): 1629-1634, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29281001

RESUMEN

Motivation: The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. Results: A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. Availability and implementation: An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. Contact: vasmatzis.george@mayo.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Visualización de Datos , Genoma Humano , Variación Estructural del Genoma , Programas Informáticos , Secuenciación Completa del Genoma/métodos , Genómica/métodos , Humanos
14.
Eur J Haematol ; 102(1): 87-96, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30270457

RESUMEN

OBJECTIVE: Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints. METHOD: We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML. RESULTS: Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed. CONCLUSION: Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies.


Asunto(s)
Aberraciones Cromosómicas , Genómica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Análisis de Secuencia de ADN , Anciano , Biología Computacional/métodos , Femenino , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Proteínas de Fusión Oncogénica/genética
15.
Genes Chromosomes Cancer ; 57(9): 459-470, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726617

RESUMEN

Copy number variation (CNV) is a common form of structural variation detected in human genomes, occurring as both constitutional and somatic events. Cytogenetic techniques like chromosomal microarray (CMA) are widely used in analyzing CNVs. However, CMA techniques cannot resolve the full nature of these structural variations (i.e. the orientation and location of associated breakpoint junctions) and must be combined with other cytogenetic techniques, such as karyotyping or FISH, to do so. This makes the development of a next-generation sequencing (NGS) approach capable of resolving both CNVs and breakpoint junctions desirable. Mate-pair sequencing (MPseq) is a NGS technology designed to find large structural rearrangements across the entire genome. Here we present an algorithm capable of performing copy number analysis from mate-pair sequencing data. The algorithm uses a step-wise procedure involving normalization, segmentation, and classification of the sequencing data. The segmentation technique combines both read depth and discordant mate-pair reads to increase the sensitivity and resolution of CNV calls. The method is particularly suited to MPseq, which is designed to detect breakpoint junctions at high resolution. This allows for the classification step to accurately calculate copy number levels at the relatively low read depth of MPseq. Here we compare results for a series of hematological cancer samples that were tested with CMA and MPseq. We demonstrate comparable sensitivity to the state-of-the-art CMA technology, with the benefit of improved breakpoint resolution. The algorithm provides a powerful analytical tool for the analysis of MPseq results in cancer.


Asunto(s)
Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Puntos de Rotura del Cromosoma , Reordenamiento Génico , Humanos , Análisis de Matrices Tisulares/métodos
16.
Blood ; 128(9): 1234-45, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27297792

RESUMEN

Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of T-cell malignancies that generally demonstrate aggressive clinical behavior, often are refractory to standard therapy, and remain significantly understudied. The most common World Health Organization subtype is PTCL, not otherwise specified (NOS), essentially a "wastebasket" category because of inadequate understanding to assign cases to a more specific diagnostic entity. Identification of novel fusion genes has contributed significantly to improving the classification, biologic understanding, and therapeutic targeting of PTCLs. Here, we integrated mate-pair DNA and RNA next-generation sequencing to identify chromosomal rearrangements encoding expressed fusion transcripts in PTCL, NOS. Two of 11 cases had novel fusions involving VAV1, encoding a truncated form of the VAV1 guanine nucleotide exchange factor important in T-cell receptor signaling. Fluorescence in situ hybridization studies identified VAV1 rearrangements in 10 of 148 PTCLs (7%). These were observed exclusively in PTCL, NOS (11%) and anaplastic large cell lymphoma (11%). In vitro, ectopic expression of a VAV1 fusion promoted cell growth and migration in a RAC1-dependent manner. This growth was inhibited by azathioprine, a clinically available RAC1 inhibitor. We also identified novel kinase gene fusions, ITK-FER and IKZF2-ERBB4, as candidate therapeutic targets that show similarities to known recurrent oncogenic ITK-SYK fusions and ERBB4 transcript variants in PTCLs, respectively. Additional novel and potentially clinically relevant fusions also were discovered. Together, these findings identify VAV1 fusions as recurrent and targetable events in PTCLs and highlight the potential for clinical sequencing to guide individualized therapy approaches for this group of aggressive malignancies.


Asunto(s)
Linfoma de Células T Periférico/genética , Proteínas de Fusión Oncogénica/genética , Anciano , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Linfoma de Células T Periférico/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Proteínas de Fusión Oncogénica/metabolismo
17.
BMC Cancer ; 18(1): 738, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30005627

RESUMEN

BACKGROUND: HER2 positive (HER2+) breast cancers involve chromosomal structural alterations that act as oncogenic driver events. METHODS: We interrogated the genomic structure of 18 clinically-defined HER2+ breast tumors through integrated analysis of whole genome and transcriptome sequencing, coupled with clinical information. RESULTS: ERBB2 overexpression in 15 of these tumors was associated with ERBB2 amplification due to chromoanasynthesis with six of them containing single events and the other nine exhibiting multiple events. Two of the more complex cases had adverse clinical outcomes. Chromosomes 8 was commonly involved in the same chromoanasynthesis with 17. In ten cases where chromosome 8 was involved we observed NRG1 fusions (two cases), NRG1 amplification (one case), FGFR1 amplification and ADAM32 or ADAM5 fusions. ERBB3 over-expression was associated with NRG1 fusions and EGFR and ERBB3 expressions were anti-correlated. Of the remaining three cases, one had a small duplication fully encompassing ERBB2 and was accompanied with a pathogenic mutation. CONCLUSION: Chromoanasynthesis involving chromosome 17 can lead to ERBB2 amplifications in HER2+ breast cancer. However, additional large genomic alterations contribute to a high level of genomic complexity, generating the hypothesis that worse outcome could be associated with multiple chromoanasynthetic events.


Asunto(s)
Neoplasias de la Mama/genética , Cromotripsis , Amplificación de Genes , Receptor ErbB-2/genética , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Cromosomas Humanos Par 17 , Estudios de Cohortes , Femenino , Humanos , Estadificación de Neoplasias , Receptor ErbB-2/análisis
18.
Pancreatology ; 18(1): 46-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29170050

RESUMEN

OBJECTIVE: We used transcriptomic profiling and immunohistochemistry (IHC) to search for a functional imaging strategy to resolve common problems with morphological imaging of cystic neoplasms and benign cystic lesions of the pancreas. METHODS: Resected pancreatic cancer (n = 21) and normal pancreas were laser-capture micro-dissected, and transcripts were quantified by RNAseq. Functional imaging targets were validated at the protein level by IHC on a pancreatic adenocarcinoma tissue microarray and a newly created tissue microarray of resected intraductal papillary mucinous neoplasms (IPMNs) and IPMN-associated adenocarcinomas. RESULTS: Genes encoding proteins responsible for cellular import of pyruvate, export of lactate, and conversion of pyruvate to lactate were highly upregulated in pancreatic adenocarcinoma compared to normal pancreas. Strong expression of MCT4 and LDHA was observed by IHC in >90% of adenocarcinoma specimens. In IPMNs, the pyruvate-to-lactate signature was significantly elevated in high grade dysplasia (HGD) and IPMN-associated adenocarcinoma. Additionally, cores containing HGD and/or adenocarcinoma exhibited a higher number of peri-lesional stromal cells and a significant increase in peri-lesional stromal cell staining of LDHA and MCT4. Interestingly, the pyruvate-to-lactate signature was significantly upregulated in cores containing only low grade dysplasia (LGD) from patients with histologically confirmed IPMN-associated adenocarcinoma versus LGD cores from patients with non-invasive IPMNs. CONCLUSION: Our results suggest prospective studies with hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging are warranted. If these IHC results translate to functional imaging findings, a positive pyruvate-to-lactate imaging signature might be a risk factor for invasion that would warrant resection of IPMNs in the absence of other worrisome features.


Asunto(s)
Adenocarcinoma Mucinoso/química , Carcinoma Ductal Pancreático/química , Carcinoma Papilar/química , Ácido Láctico/química , Neoplasias Pancreáticas/química , Ácido Pirúvico/química , Adenocarcinoma Mucinoso/patología , Biomarcadores de Tumor , Carcinoma Ductal Pancreático/patología , Carcinoma Papilar/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Páncreas/química , Páncreas/patología , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Transcriptoma
19.
Future Oncol ; 14(6): 553-566, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29460642

RESUMEN

Worldwide hepatobiliary cancers are the second leading cause of cancer related death. Despite their relevance, hepatobiliary cancers have a paucity of approved systemic therapy options. However, there are a number of emerging therapeutic biomarkers and therapeutic concepts that show promise. In hepatocellular carcinoma, nivolumab appears particularly promising and recently received US FDA approval. In intrahepatic cholangiocarcinoma, therapies targeting FGFR2 and IDH1 and immune checkpoint inhibitors are the furthest along and generating the most excitement. There are additional biomarkers that merit further exploration in hepatobiliary cancers including FGF19, ERRFI1, TERT, BAP1, BRAF, CDKN2A, tumor mutational burden and ERBB2 (HER2/neu). Development of new and innovative therapies would help address the unmet need for effective systemic therapies in advanced and metastatic hepatobiliary cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Sistema Biliar/tratamiento farmacológico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Terapia Molecular Dirigida , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Neoplasias del Sistema Biliar/diagnóstico , Neoplasias del Sistema Biliar/mortalidad , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/mortalidad , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/mortalidad , Transducción de Señal , Resultado del Tratamiento
20.
Genes Chromosomes Cancer ; 56(1): 59-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27636103

RESUMEN

Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Sitios Frágiles del Cromosoma/genética , Reordenamiento Génico , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Integración Viral/genética , Emparejamiento Base , Secuencia de Bases , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Aberraciones Cromosómicas , Humanos , Proteínas de la Membrana/genética , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Receptores de LDL/genética , Homología de Secuencia de Ácido Nucleico , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA