Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 204(8): 2203-2215, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32161098

RESUMEN

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.


Asunto(s)
Fibrosis/inmunología , Fibrosis/patología , Macrófagos/inmunología , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Células Mieloides/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Cardiotoxinas , Fibrosis/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/patología , Fenotipo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/complicaciones , Daño por Reperfusión/inmunología
2.
Am J Pathol ; 188(11): 2464-2473, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142335

RESUMEN

Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.


Asunto(s)
Quemaduras/complicaciones , Modelos Animales de Enfermedad , Inflamación/patología , Células Madre Mesenquimatosas/patología , Osificación Heterotópica/patología , Animales , Femenino , Inflamación/sangre , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL , Osificación Heterotópica/sangre , Osificación Heterotópica/etiología , Osteogénesis , Transducción de Señal
3.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36099022

RESUMEN

Transforming growth factor-ß1 (TGF-ß1) plays a central role in normal and aberrant wound healing, but the precise mechanism in the local environment remains elusive. Here, using a mouse model of aberrant wound healing resulting in heterotopic ossification (HO) after traumatic injury, we find autocrine TGF-ß1 signaling in macrophages, and not mesenchymal stem/progenitor cells, is critical in HO formation. In-depth single-cell transcriptomic and epigenomic analyses in combination with immunostaining of cells from the injury site demonstrated increased TGF-ß1 signaling in early infiltrating macrophages, with open chromatin regions in TGF-ß1-stimulated genes at binding sites specific for transcription factors of activated TGF-ß1 (SMAD2/3). Genetic deletion of TGF-ß1 receptor type 1 (Tgfbr1; Alk5), in macrophages, resulted in increased HO, with a trend toward decreased tendinous HO. To bypass the effect seen by altering the receptor, we administered a systemic treatment with TGF-ß1/3 ligand trap TGF-ßRII-Fc, which resulted in decreased HO formation and a delay in macrophage infiltration to the injury site. Overall, our data support the role of the TGF-ß1/ALK5 signaling pathway in HO.


Asunto(s)
Osificación Heterotópica , Factor de Crecimiento Transformador beta1 , Humanos , Cromatina/metabolismo , Ligandos , Macrófagos/metabolismo , Osificación Heterotópica/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas , Factor de Crecimiento Transformador beta/metabolismo
4.
Stem Cell Reports ; 16(3): 626-640, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33606989

RESUMEN

Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osteogénesis , Adipocitos/metabolismo , Animales , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Epigenómica , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Osificación Heterotópica/patología , Osteoblastos/metabolismo , Análisis de la Célula Individual , Tendones/metabolismo
5.
J Orthop Res ; 38(4): 708-718, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31721278

RESUMEN

In this review, we highlight themes from a recent workshop focused on "Plasticity of Cell Fate in Musculoskeletal Tissues" held at the Orthopaedic Research Society's 2019 annual meeting. Experts in the field provided examples of mesenchymal cell plasticity during normal musculoskeletal development, regeneration, and disease. A thorough understanding of the biology underpinning mesenchymal cell plasticity may offer a roadmap for promoting regeneration while attenuating pathologic differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:708-718, 2020.


Asunto(s)
Plasticidad de la Célula , Desarrollo Musculoesquelético , Animales , Diferenciación Celular , Enfermedad , Humanos , Miositis Osificante/genética , Osificación Heterotópica/etiología , Regeneración , Heridas y Lesiones/complicaciones
6.
Nat Commun ; 11(1): 722, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024825

RESUMEN

Heterotopic ossification (HO) is an aberrant regenerative process with ectopic bone induction in response to musculoskeletal trauma, in which mesenchymal stem cells (MSC) differentiate into osteochondrogenic cells instead of myocytes or tenocytes. Despite frequent cases of hospitalized musculoskeletal trauma, the inflammatory responses and cell population dynamics that regulate subsequent wound healing and tissue regeneration are still unclear. Here we examine, using a mouse model of trauma-induced HO, the local microenvironment of the initial post-injury inflammatory response. Single cell transcriptome analyses identify distinct monocyte/macrophage populations at the injury site, with their dynamic changes over time elucidated using trajectory analyses. Mechanistically, transforming growth factor beta-1 (TGFß1)-producing monocytes/macrophages are associated with HO and aberrant chondrogenic progenitor cell differentiation, while CD47-activating peptides that reduce systemic macrophage TGFß levels and help ameliorate HO. Our data thus implicate CD47 activation as a therapeutic approach for modulating monocyte/macrophage phenotypes, MSC differentiation and HO formation during wound healing.


Asunto(s)
Quemaduras/patología , Monocitos/patología , Osificación Heterotópica/patología , Cicatrización de Heridas/fisiología , Animales , Antígeno CD47/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Macrófagos/patología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos/farmacología , Fagocitosis , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
7.
J Burn Care Res ; 40(4): 398-405, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31053861

RESUMEN

Oxandrolone, a testosterone analog, is used to counteract the catabolic effects of burn injury. Recent animal studies suggest a possible hormonal association with heterotopic ossification (HO) development postburn. This work examines oxandrolone administration and HO development by exploring historical clinical data bridging the introduction of oxandrolone into clinical practice. Additionally, we examine associations between oxandrolone administration and HO in a standardized mouse model of burn/trauma-related HO. Acutely burned adults admitted between 2000 and 2014, survived through discharge, and had a HO risk factor of 7 or higher were selected for analysis from a single burn center. Oxandrolone administration, clinical and demographic data, and elbow HO were recorded and were analyzed with logistic regression. Associations of oxandrolone with HO were examined in a mouse model. Mice were administered oxandrolone or vehicle control following burn/tenotomy to examine any potential effect of oxandrolone on HO and were analyzed by Student's t test. Subjects who received oxandrolone had a higher incidence of elbow HO than those that did not receive oxandrolone. However, when controlling for oxandrolone administration, oxandrolone duration, postburn day oxandrolone initiation, HO risk score category, age, sex, race, burn size, and year of injury, there was no significant difference between rates of elbow HO between the two populations. In agreement with the review, in the mouse model, while there was a trend toward the oxandrolone group developing a greater volume of HO, this did not reach statistical significance.


Asunto(s)
Anabolizantes/efectos adversos , Quemaduras/tratamiento farmacológico , Osificación Heterotópica/inducido químicamente , Oxandrolona/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Adulto , Anabolizantes/uso terapéutico , Animales , Quemaduras/fisiopatología , Femenino , Humanos , Masculino , Ratones , Modelos Animales , Osificación Heterotópica/prevención & control , Oxandrolona/uso terapéutico , Factores de Riesgo , Resultado del Tratamiento
8.
Bone Res ; 7: 36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31840004

RESUMEN

Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA