Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Biol Chem ; 298(11): 102467, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087839

RESUMEN

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencia de Aminoácidos , Bloqueadores de los Canales de Potasio/química , Péptidos/química , Ligandos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.5/metabolismo
2.
Biophys J ; 120(12): 2471-2481, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33932436

RESUMEN

The α-Hairpinins are a family of plant defense peptides with a common fold presenting two short α-helices stabilized by two invariant S-S-bridges. We have shown previously that substitution of just two amino acid residues in a wheat α-hairpinin Tk-AMP-X2 leads to Tk-hefu-2 that features specific affinity to voltage-gated potassium channels KV1.3. Here, we utilize a combined molecular modeling approach based on molecular dynamics simulations and protein surface topography technique to improve the affinity of Tk-hefu-2 to KV1.3 while preserving its specificity. An important advance of this work compared with our previous studies is transition from the analysis of various physicochemical properties of an isolated toxin molecule to its consideration in complex with its target, a membrane-bound ion channel. As a result, a panel of computationally designed Tk-hefu-2 derivatives was synthesized and tested against KV1.3. The most active mutant Tk-hefu-10 showed a half-maximal inhibitory concentration of ∼150 nM being >10 times more active than Tk-hefu-2 and >200 times more active than the original Tk-hefu. We conclude that α-hairpinins provide an attractive disulfide-stabilized scaffold for the rational design of ion channel inhibitors. Furthermore, the success rate can be considerably increased by the proposed "target-based" iterative strategy of molecular design.


Asunto(s)
Bloqueadores de los Canales de Potasio , Venenos de Escorpión , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Péptidos , Bloqueadores de los Canales de Potasio/farmacología , Proteínas
3.
Proteins ; 2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33713480

RESUMEN

Old world scorpions produce an abundance of toxins called α-NaTx, which interfere with the fast inactivation of voltage-gated sodium channels. Their selectivity to channels of mammals or insects depends on a part of toxin named the specificity module. We report here the spatial structure of a major and broadly active toxin MeuNaTxα-1 from the venom of Mesobuthus eupeus. Notably, its specificity module is markedly different from other α-NaTx with known 3D structure. Close inspection shows that its conformation is a result of an interplay between protein motifs such as the nest and niche, which eventually shape α-NaTx structural diversity.

4.
Proc Natl Acad Sci U S A ; 115(17): 4495-4500, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29636418

RESUMEN

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.


Asunto(s)
Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Neurotoxinas/toxicidad , Parálisis Periódica Hiperpotasémica/metabolismo , Estructura Secundaria de Proteína , Venenos de Araña/toxicidad , Sustitución de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/patología , Xenopus laevis
5.
J Biol Chem ; 294(48): 18349-18359, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31533989

RESUMEN

Tk-hefu is an artificial peptide designed based on the α-hairpinin scaffold, which selectively blocks voltage-gated potassium channels Kv1.3. Here we present its spatial structure resolved by NMR spectroscopy and analyze its interaction with channels using computer modeling. We apply protein surface topography to suggest mutations and increase Tk-hefu affinity to the Kv1.3 channel isoform. We redesign the functional surface of Tk-hefu to better match the respective surface of the channel pore vestibule. The resulting peptide Tk-hefu-2 retains Kv1.3 selectivity and displays ∼15 times greater activity compared with Tk-hefu. We verify the mode of Tk-hefu-2 binding to the channel outer vestibule experimentally by site-directed mutagenesis. We argue that scaffold engineering aided by protein surface topography represents a reliable tool for design and optimization of specific ion channel ligands.


Asunto(s)
Canal de Potasio Kv1.3/química , Péptidos/química , Bloqueadores de los Canales de Potasio/química , Proteínas/química , Secuencia de Aminoácidos , Animales , Humanos , Canal de Potasio Kv1.3/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación de Dinámica Molecular , Mutación , Péptidos/genética , Péptidos/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/metabolismo , Propiedades de Superficie
6.
Proteins ; 86(10): 1117-1122, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007037

RESUMEN

Sodium channel alpha-toxins from scorpion venom (α-NaTx) inhibit the inactivation of voltage-gated sodium channels. We used solution NMR to investigate the structure of BeM9 toxin from Mesobuthus eupeus scorpion, a prototype α-NaTx classified as an "α-like" toxin due to its wide spectrum of activity on insect and mammalian channels. We identified a new motif that we named "arginine hand," whereby arginine side chain forms several hydrogen bonds with main chain atoms. The arginine hand was found in the "specificity module," a part of the molecule that dictates toxin selectivity; and just single arginine-to-lysine point mutation drastically changed BeM9 selectivity profile.


Asunto(s)
Arginina/química , Proteínas de Artrópodos/química , Neurotoxinas/química , Venenos de Escorpión/química , Escorpiones/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia
7.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 465-472, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28179135

RESUMEN

We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity.


Asunto(s)
Bloqueadores de los Canales de Potasio/química , Conformación Proteica , Venenos de Escorpión/metabolismo , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Electrofisiología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/química , Oocitos/metabolismo , Técnicas de Placa-Clamp , Potasio/química , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/genética , Venenos de Escorpión/aislamiento & purificación , Escorpiones/química , Escorpiones/metabolismo , Xenopus/genética
8.
Biochem J ; 473(19): 3113-26, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27412961

RESUMEN

Traditionally, arachnid venoms are known to contain two particularly important groups of peptide toxins. One is disulfide-rich neurotoxins with a predominance of ß-structure that specifically target protein receptors in neurons or muscle cells. The other is linear cationic cytotoxins that form amphiphilic α-helices and exhibit rather non-specific membrane-damaging activity. In the present paper, we describe the first 3D structure of a modular arachnid toxin, purotoxin-2 (PT2) from the wolf spider Alopecosa marikovskyi (Lycosidae), studied by NMR spectroscopy. PT2 is composed of an N-terminal inhibitor cystine knot (ICK, or knottin) ß-structural domain and a C-terminal linear cationic domain. In aqueous solution, the C-terminal fragment is hyper-flexible, whereas the knottin domain is very rigid. In membrane-mimicking environment, the C-terminal domain assumes a stable amphipathic α-helix. This helix effectively tethers the toxin to membranes and serves as a membrane-access and membrane-anchoring device. Sequence analysis reveals that the knottin + α-helix architecture is quite widespread among arachnid toxins, and PT2 is therefore the founding member of a large family of polypeptides with similar structure motifs. Toxins from this family target different membrane receptors such as P2X in the case of PT2 and calcium channels, but their mechanism of action through membrane access may be strikingly similar.


Asunto(s)
Venenos de Araña/química , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Venenos de Araña/farmacología
9.
Biochem J ; 473(16): 2495-506, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287558

RESUMEN

In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule.


Asunto(s)
Venenos de Araña/toxicidad , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Dicroismo Circular , ADN Complementario , Bases de Datos Genéticas , Femenino , Insecticidas/farmacología , Masculino , Pruebas de Sensibilidad Microbiana , Peso Molecular , Estructura Secundaria de Proteína , Sarcofágidos/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Venenos de Araña/química , Venenos de Araña/genética , Arañas
10.
J Biol Chem ; 290(19): 12195-209, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25792741

RESUMEN

The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/ß and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.


Asunto(s)
Canal de Potasio Kv.1.1/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cromatografía , Escherichia coli/metabolismo , Femenino , Colorantes Fluorescentes/química , Biblioteca de Genes , Concentración 50 Inhibidora , Ligandos , Espectrometría de Masas , Datos de Secuencia Molecular , Oocitos , Filogenia , Proteoma , Ratas , Escorpiones , Homología de Secuencia de Aminoácido , Transcripción Genética , Transcriptoma , Xenopus
11.
J Biol Chem ; 290(1): 492-504, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25352595

RESUMEN

We present a structural and functional study of a sodium channel activation inhibitor from crab spider venom. Hm-3 is an insecticidal peptide toxin consisting of 35 amino acid residues from the spider Heriaeus melloteei (Thomisidae). We produced Hm-3 recombinantly in Escherichia coli and determined its structure by NMR spectroscopy. Typical for spider toxins, Hm-3 was found to adopt the so-called "inhibitor cystine knot" or "knottin" fold stabilized by three disulfide bonds. Its molecule is amphiphilic with a hydrophobic ridge on the surface enriched in aromatic residues and surrounded by positive charges. Correspondingly, Hm-3 binds to both neutral and negatively charged lipid vesicles. Electrophysiological studies showed that at a concentration of 1 µm Hm-3 effectively inhibited a number of mammalian and insect sodium channels. Importantly, Hm-3 shifted the dependence of channel activation to more positive voltages. Moreover, the inhibition was voltage-dependent, and strong depolarizing prepulses attenuated Hm-3 activity. The toxin is therefore concluded to represent the first sodium channel gating modifier from an araneomorph spider and features a "membrane access" mechanism of action. Its amino acid sequence and position of the hydrophobic cluster are notably different from other known gating modifiers from spider venom, all of which are described from mygalomorph species. We hypothesize parallel evolution of inhibitor cystine knot toxins from Araneomorphae and Mygalomorphae suborders.


Asunto(s)
Bloqueadores de los Canales de Sodio/química , Venenos de Araña/química , Arañas/química , Canales de Sodio Activados por Voltaje/química , Secuencia de Aminoácidos , Animales , Membrana Celular/química , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Venenos de Araña/clasificación , Venenos de Araña/genética , Venenos de Araña/aislamiento & purificación , Arañas/fisiología , Liposomas Unilamelares/química , Canales de Sodio Activados por Voltaje/metabolismo
12.
Cell Mol Life Sci ; 72(23): 4501-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26286896

RESUMEN

Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos/química , Péptidos/farmacología , Venenos de Araña/química , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Membrana Celular/química , Membrana Celular/metabolismo , Hemolíticos/química , Hemolíticos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Venenos de Araña/aislamiento & purificación , Venenos de Araña/farmacología , Relación Estructura-Actividad
13.
J Biol Chem ; 289(20): 14331-40, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24671422

RESUMEN

In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 µm) to κ-hefutoxin 1 (IC50 ∼ 40 µm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Neurotoxinas/química , Ingeniería de Proteínas , Escorpiones/química , Triticum/química , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Disulfuros/química , Fenómenos Electrofisiológicos/efectos de los fármacos , Modelos Moleculares , Neurotoxinas/genética , Resonancia Magnética Nuclear Biomolecular , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
14.
J Biol Chem ; 288(26): 19014-27, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23637230

RESUMEN

To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.


Asunto(s)
Neurotoxinas/química , Venenos de Escorpión/química , Canales de Sodio/química , Secuencia de Aminoácidos , Animales , Biología Computacional , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Propiedades de Superficie
15.
Biochim Biophys Acta ; 1828(2): 724-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23088912

RESUMEN

Venom of Lachesana tarabaevi (Zodariidae, "ant spiders") exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices.


Asunto(s)
Cisteína/química , Venenos de Araña/química , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular , ADN Complementario/metabolismo , Disulfuros/química , Electrofisiología/métodos , Insecticidas/química , Lípidos/química , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Neurotoxinas/química , Péptido Hidrolasas/química , Péptidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Compuestos de Sulfhidrilo/química
16.
Plant Mol Biol ; 84(1-2): 189-202, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081691

RESUMEN

Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.


Asunto(s)
Antifúngicos/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Stellaria/química , Secuencia de Aminoácidos , Antifúngicos/química , Clonación Molecular , Evolución Molecular , Hongos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Semillas/química , Semillas/genética , Stellaria/metabolismo
17.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563123

RESUMEN

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Asunto(s)
Arginina , Canal de Potasio ERG1 , Simulación de Dinámica Molecular , Venenos de Escorpión , Animales , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potasio ERG1/química , Canal de Potasio ERG1/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Mutación , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/genética , Venenos de Escorpión/metabolismo
18.
Biochim Biophys Acta ; 1818(11): 2868-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22842000

RESUMEN

Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.


Asunto(s)
Receptores Purinérgicos P2X3/efectos de los fármacos , Venenos de Araña/farmacología , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Cartilla de ADN , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , Espectrofotometría Ultravioleta
19.
Arch Microbiol ; 195(3): 173-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23277388

RESUMEN

Antichlamydial activity of cyto-insectotoxin 1a (CIT 1a), representative of a unique class of antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi, was studied. A plasmid vector expressing the cit 1a gene controlled by a human cytomegalovirus tetracycline-dependent promoter was constructed. Impressive inhibition of Chlamydia trachomatis infection in HEK 293 cells transfected by the cit 1a-harboring vector was achieved. With the use of various schemes of cell infection and gene expression induction, it was shown for the first time that an antimicrobial peptide exerts its potent antichlamydial action at an early stage of the pathogen life cycle.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Chlamydia trachomatis/efectos de los fármacos , Venenos de Araña/química , Arañas/química , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Infecciones por Chlamydia/prevención & control , Chlamydia trachomatis/genética , Vectores Genéticos/genética , Células HEK293 , Humanos , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Transfección
20.
Anal Bioanal Chem ; 405(7): 2379-89, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307127

RESUMEN

Human voltage-gated potassium channel Kv1.3 is an important pharmacological target for the treatment of autoimmune and metabolic diseases. Increasing clinical demands stipulate an active search for efficient and selective Kv1.3 blockers. Here we present a new, reliable, and easy-to-use analytical system designed to seek for and study Kv1.3 ligands that bind to the extracellular vestibule of the K(+)-conducting pore. It is based on Escherichia coli spheroplasts with the hybrid protein KcsA-Kv1.3 embedded into the membrane, fluorescently labeled Kv1.3 blocker agitoxin-2, and confocal laser scanning microscopy as a detection method. This system is a powerful alternative to radioligand and patch-clamp techniques. It enables one to search for Kv1.3 ligands both among individual compounds and in complex mixtures, as well as to characterize their affinity to Kv1.3 channel using the "mix and read" mode. To demonstrate the potential of the system, we performed characterization of several known Kv1.3 ligands, tested nine spider venoms for the presence of Kv1.3 ligands, and conducted guided purification of a channel blocker from scorpion venom.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/genética , Canal de Potasio Kv1.3/química , Microscopía Confocal/métodos , Animales , Escherichia coli/química , Escherichia coli/metabolismo , Expresión Génica , Humanos , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Ligandos , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/genética , Venenos de Escorpión/metabolismo , Escorpiones , Esferoplastos/química , Esferoplastos/genética , Esferoplastos/metabolismo , Venenos de Araña/química , Arañas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA