Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Acta Neuropathol ; 142(6): 985-1001, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34618203

RESUMEN

Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA-binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the most dysregulated of all RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified, but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases, but did not identify association of ELAVL3 genetic structure with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest that it is involved by loss of function rather than cytoplasmic toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína 3 Similar a ELAV/metabolismo , Neuronas Motoras/metabolismo , Núcleo Celular/metabolismo , Humanos
2.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31456031

RESUMEN

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Asunto(s)
Lisosomas/patología , Neuronas/patología , Tauopatías/patología , Vacuolas/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Tauopatías/metabolismo , Vacuolas/metabolismo , Proteínas tau/genética
3.
J Neurosci ; 36(26): 6881-91, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358447

RESUMEN

UNLABELLED: Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex result in an additional interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing Munc18-1 mutants designed to either perturb the extension of helix 12 (Δ324-339), block its interaction with synaptobrevin-2 (L348R), or extend the helix to promote coil-coil interactions with other proteins (P335A). The mutants rescued vesicle docking and syntaxin-1 targeting to the plasma membrane, with the exception of P335A that only supported partial syntaxin-1 targeting. Disruptive mutations (L348R or Δ324-339) lowered the secretory amplitude by decreasing vesicle priming, whereas P335A markedly increased priming and secretory amplitude. The mutants displayed unchanged kinetics and Ca(2+) dependence of fusion, indicating that the mutations specifically affect the vesicle priming step. Mutation of a nearby tyrosine (Y337A), which interacts with closed syntaxin-1, mildly increased secretory amplitude. This correlated with results from an in vitro fusion assay probing the functions of Munc18-1, indicating an easier transition to the extended state in the mutant. Our findings support the notion that a conformational transition within the Munc18-1 domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and vesicle priming. SIGNIFICANCE STATEMENT: The essential postdocking role of Munc18-1 in vesicular exocytosis has remained elusive, but recent data led to the hypothesis that the extension of helix 12 in Munc18 within domain 3a leads to synaptobrevin-2/VAMP2 interaction and SNARE complex formation. Using both lack-of-function and gain-of-function mutants, we here report that the conformation of helix 12 predicts vesicle priming and secretory amplitude in living chromaffin cells. The effects of mutants on secretion could not be explained by differences in syntaxin-1 chaperoning/localization or vesicle docking, and the fusion kinetics and calcium dependence were unchanged, indicating that the effect of helix 12 extension is specific for the vesicle-priming step. We conclude that a conformational change within helix 12 is responsible for the essential postdocking role of Munc18-1 in neurosecretion.


Asunto(s)
Proteínas Munc18/metabolismo , Estructura Terciaria de Proteína/fisiología , Vesículas Secretoras/metabolismo , Sinteninas/metabolismo , Animales , Membrana Celular/ultraestructura , Células Cultivadas , Células Cromafines/metabolismo , Células Cromafines/ultraestructura , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas Munc18/genética , Mutación/genética , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/ultraestructura , Sinteninas/genética , Transfección , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
4.
Mol Neurodegener ; 19(1): 46, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862967

RESUMEN

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.


Asunto(s)
Progresión de la Enfermedad , Demencia Frontotemporal , Ratones Transgénicos , Proteína FUS de Unión a ARN , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Agregación Patológica de Proteínas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética
5.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895337

RESUMEN

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.

6.
Science ; 379(6637): 1140-1149, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927019

RESUMEN

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Asunto(s)
Proteínas de Unión al ADN , Edición Génica , Poliadenilación , Empalme del ARN , Estatmina , Proteinopatías TDP-43 , Animales , Humanos , Ratones , Proteínas de Unión al ADN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Estatmina/genética , Estatmina/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/terapia , Sitios de Empalme de ARN , Oligonucleótidos Antisentido/genética , Proyección Neuronal
7.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961595

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene encoding huntingtin. Prior reports have established a correlation between CAG expanded HTT and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear. Here, our analysis of the reported HTT protein interactome identifies interactions with known RNA-binding proteins (RBPs). Total, long-read sequencing and targeted RASL-seq of RNAs from cortex and striatum of the HD mouse model R6/2 reveals increased exon skipping which is confirmed in Q150 and Q175 knock-in mice and in HD human brain. We identify the RBP TDP-43 and the N6-methyladenosine (m6A) writer protein methyltransferase 3 (METTL3) to be upstream regulators of exon skipping in HD. Along with this novel mechanistic insight, we observe decreased nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 in HD mice and human brain. In addition, TDP-43 co-localizes with HTT in human HD brain forming novel nuclear aggregate-like bodies distinct from mutant HTT inclusions or previously observed TDP-43 pathologies. Binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in striatum from HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a novel mechanism underlying alternative splicing/unannotated exon usage in HD and highlights the critical nature of TDP-43 function across multiple neurodegenerative diseases.

8.
Nat Cell Biol ; 24(9): 1378-1393, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36075972

RESUMEN

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43's RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico , Transición de Fase , Adenosina Trifosfato , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal , ARN/metabolismo
9.
Science ; 371(6529)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335017

RESUMEN

The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregado de Proteínas , Proteínas de Unión al ARN/metabolismo , Envejecimiento/metabolismo , Animales , Anisotropía , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Cristales Líquidos/química , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Dominios Proteicos , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
10.
Sci Rep ; 10(1): 18239, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106523

RESUMEN

Sorting nexin 4 (SNX4) is an evolutionary conserved protein that mediates recycling from endosomes back to the plasma membrane in yeast and mammalian cells. SNX4 is expressed in the brain. Altered protein levels are associated with Alzheimer's disease, but the neuronal localization and function of SNX4 have not been addressed. Using a new antibody, endogenous neuronal SNX4 co-localized with both early and recycling endosome markers, similar to the reported localization of SNX4 in non-neuronal cells. Neuronal SNX4 accumulated specifically in synaptic areas, with a predominant localization to presynaptic terminals. Acute depletion of neuronal SNX4 using independent short hairpin RNAs did not affect the levels of the transferrin receptor, a canonical SNX4 cargo. Quantitative mass spectrometry revealed that upon SNX4 knockdown the class of proteins involved in neurotransmission was the most dysregulated. This included integral membrane proteins at both the presynaptic and postsynaptic side of the synapse that participate in diverse synaptic processes such as synapse assembly, neurotransmission and the synaptic vesicle cycle. These data suggest that SNX4 is implicated in a variety of synaptic processes.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Neuronas/metabolismo , Nexinas de Clasificación/metabolismo , Sinapsis/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Transporte de Proteínas , Receptores de Transferrina/metabolismo
12.
Sci Rep ; 8(1): 2996, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445238

RESUMEN

The endosomal system is proposed as a mediator of synaptic vesicle recycling, but the molecular recycling mechanism remains largely unknown. Retromer is a key protein complex which mediates endosomal recycling in eukaryotic cells, including neurons. Retromer is important for brain function and mutations in retromer genes are linked to neurodegenerative diseases. In this study, we aimed to determine the role of retromer in presynaptic structure and function. We assessed the role of retromer by knocking down VPS35, the core subunit of retromer, in primary hippocampal mouse neurons. VPS35 depletion led to retromer dysfunction, measured as a decrease in GluA1 at the plasma membrane, and bypassed morphological defects previously described in chronic retromer depletion models. We found that retromer is localized at the mammalian presynaptic terminal. However, VPS35 depletion did not alter the presynaptic ultrastructure, synaptic vesicle release or retrieval. Hence, we conclude that retromer is present in the presynaptic terminal but it is not essential for the synaptic vesicle cycle. Nonetheless, the presynaptic localization of VPS35 suggests that retromer-dependent endosome sorting could take place for other presynaptic cargo.


Asunto(s)
Membrana Celular/metabolismo , Sinapsis Eléctricas/metabolismo , Hipocampo/patología , Neuronas/fisiología , Enfermedad de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Sinapsis Eléctricas/ultraestructura , Humanos , Ratones , Transporte de Proteínas , ARN Interferente Pequeño/genética , Receptores AMPA/sangre , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA