Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387333

RESUMEN

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Antineoplásicos/química , Antraquinonas/química , Triazoles/farmacología , Proliferación Celular , Puntos de Control del Ciclo Celular , Ligandos
2.
Biochimie ; 201: 43-54, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35817132

RESUMEN

G4-stabilizing ligands are now being considered as anticancer, antiviral and antibacterial agents. Phenoxazine is a promising scaffold for the development of G4 ligands. Here, we profiled two known phenoxazine-based nucleoside analogs and five new nucleoside and non-nucleoside derivatives against G4 targets from telomere repeats and the KIT promoter region. Leading new derivatives exhibited remarkably high G4-stabilizing effects (comparable or superior to the effects of the commonly used selective G4 ligands PDS and NMM) and selectivity toward G4s over duplex (superior to BRACO-19). All phenoxazine-based ligands inhibited cellular metabolic activity. The phenoxazine derivatives were particularly toxic for lung adenocarcinoma cells A549' and human liver cancer cells HepG2 (CC50 of the nucleoside analogues in the nanomolar range), but also affected breast cancer cells MCF7, as well as immortalized fibroblasts VA13 and embryonic kidney cells HEK293t (CC50 in the micromolar range). Importantly, the CC50 values varied mostly in accordance with G4-binding affinities and G4-stabilizing effects, and the phenoxazine derivatives localized in the cell nuclei, which corroborates G4-mediated mechanisms of action.


Asunto(s)
G-Cuádruplex , Antibacterianos , Antivirales , Células HEK293 , Humanos , Ligandos , Nucleósidos , Oxazinas , Relación Estructura-Actividad , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA