Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 388(16): 1491-1500, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37075141

RESUMEN

BACKGROUND: In 2017, more than half the cases of typhoid fever worldwide were projected to have occurred in India. In the absence of contemporary population-based data, it is unclear whether declining trends of hospitalization for typhoid in India reflect increased antibiotic treatment or a true reduction in infection. METHODS: From 2017 through 2020, we conducted weekly surveillance for acute febrile illness and measured the incidence of typhoid fever (as confirmed on blood culture) in a prospective cohort of children between the ages of 6 months and 14 years at three urban sites and one rural site in India. At an additional urban site and five rural sites, we combined blood-culture testing of hospitalized patients who had a fever with survey data regarding health care use to estimate incidence in the community. RESULTS: A total of 24,062 children who were enrolled in four cohorts contributed 46,959 child-years of observation. Among these children, 299 culture-confirmed typhoid cases were recorded, with an incidence per 100,000 child-years of 576 to 1173 cases in urban sites and 35 in rural Pune. The estimated incidence of typhoid fever from hospital surveillance ranged from 12 to 1622 cases per 100,000 child-years among children between the ages of 6 months and 14 years and from 108 to 970 cases per 100,000 person-years among those who were 15 years of age or older. Salmonella enterica serovar Paratyphi was isolated from 33 children, for an overall incidence of 68 cases per 100,000 child-years after adjustment for age. CONCLUSIONS: The incidence of typhoid fever in urban India remains high, with generally lower estimates of incidence in most rural areas. (Funded by the Bill and Melinda Gates Foundation; NSSEFI Clinical Trials Registry of India number, CTRI/2017/09/009719; ISRCTN registry number, ISRCTN72938224.).


Asunto(s)
Fiebre Paratifoidea , Fiebre Tifoidea , Humanos , Lactante , Incidencia , India/epidemiología , Fiebre Paratifoidea/diagnóstico , Fiebre Paratifoidea/epidemiología , Vigilancia de la Población , Estudios Prospectivos , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/epidemiología , Costo de Enfermedad , Cultivo de Sangre , Preescolar , Niño , Adolescente , Población Urbana/estadística & datos numéricos , Población Rural/estadística & datos numéricos , Hospitalización/estadística & datos numéricos
2.
Nucleic Acids Res ; 52(17): 10385-10399, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180403

RESUMEN

The genomic landscape associated with early adaptation to ciprofloxacin is poorly understood. Although the interplay between core metabolism and antimicrobial resistance is being increasingly recognized, mutations in metabolic genes and their biological role remain elusive. Here, we exposed Escherichia coli to increasing gradients of ciprofloxacin with intermittent transfer-bottlenecking and identified mutations in three non-canonical targets linked to metabolism including a deletion (tRNA-ArgΔ414-bp) and point mutations in the regulatory regions of argI (ARG box) and narU. Our findings suggest that these mutations modulate arginine and carbohydrate metabolism, facilitate anaerobiosis and increased ATP production during ciprofloxacin stress. Furthermore, mutations in the regulatory regions of argI and narU were detected in over 70% of sequences from clinical E. coli isolates and were overrepresented among ciprofloxacin-resistant isolates. In sum, we have identified clinically relevant mutations in the regulatory regions of metabolic genes as a central theme that drives physiological changes necessary for adaptation to ciprofloxacin stress.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Mutación , Ciprofloxacina/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Adaptación Fisiológica/genética , Regulación Bacteriana de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos
3.
PLoS Pathog ; 19(4): e1010650, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37115804

RESUMEN

Paratyphoid fever caused by S. Paratyphi A is endemic in parts of South Asia and Southeast Asia. The proportion of enteric fever cases caused by S. Paratyphi A has substantially increased, yet only limited data is available on the population structure and genetic diversity of this serovar. We examined the phylogenetic distribution and evolutionary trajectory of S. Paratyphi A isolates collected as part of the Indian enteric fever surveillance study "Surveillance of Enteric Fever in India (SEFI)." In the study period (2017-2020), S. Paratyphi A comprised 17.6% (441/2503) of total enteric fever cases in India, with the isolates highly susceptible to all the major antibiotics used for treatment except fluoroquinolones. Phylogenetic analysis clustered the global S. Paratyphi A collection into seven lineages (A-G), and the present study isolates were distributed in lineages A, C and F. Our analysis highlights that the genome degradation events and gene acquisitions or losses are key molecular events in the evolution of new S. Paratyphi A lineages/sub-lineages. A total of 10 hypothetically disrupted coding sequences (HDCS) or pseudogenes-forming mutations possibly associated with the emergence of lineages were identified. The pan-genome analysis identified the insertion of P2/PSP3 phage and acquisition of IncX1 plasmid during the selection in 2.3.2/2.3.3 and 1.2.2 genotypes, respectively. We have identified six characteristic missense mutations associated with lipopolysaccharide (LPS) biosynthesis genes of S. Paratyphi A, however, these mutations confer only a low structural impact and possibly have minimal impact on vaccine effectiveness. Since S. Paratyphi A is human-restricted, high levels of genetic drift are not expected unless these bacteria transmit to naive hosts. However, public-health investigation and monitoring by means of genomic surveillance would be constantly needed to avoid S. Paratyphi A serovar becoming a public health threat similar to the S. Typhi of today.


Asunto(s)
Fiebre Tifoidea , Humanos , Fiebre Tifoidea/microbiología , Salmonella typhi/genética , Filogenia , Salmonella paratyphi A/genética , Antibacterianos , Genómica
4.
Artículo en Inglés | MEDLINE | ID: mdl-38416290

RESUMEN

A case of sino-pulmonary infection with skull base osteomyelitis due to XDR-Pseudomonas aeruginosa in renal transplant recipient was successfully treated with investigational antibiotic, cefepime/zidebactam (WCK 5222). This case highlights challenges in managing XDR-pseudomonal infection where source control was infeasible, antibiotic options were extremely limited and individualized dose adjustments were needed.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39297907

RESUMEN

Stenotrophomonas maltophilia is challenging to treat due to the presence of multiple intrinsic and acquired resistance mechanisms. TMP-SMZ is the standard care of therapy for treating S. maltophilia infections; levofloxavin and minocycline are the preferred potential alternatives. Recently, in 2024, CLSI has lowered the susceptibility breakpoints for minocycline against S. maltophilia. Applying the revised minocycline's susceptibility breakpoint of ≤ 1 mg/L, susceptibility to minocycline dropped significantly from 77% (previous breakpoint, ≤ 4 mg/L) to 35% (revised breakpoint of ≤ 1 mg/L). In the wake of this change, minocycline's dependency has been questioned for treating S. maltophilia infections.

6.
J Cell Biochem ; 124(7): 974-988, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37282600

RESUMEN

Carbapenem-resistant Acinetobacter baumannii, a predominant nosocomial pathogen in hospitals of intensive care units, is associated with bacteremia and ventilator-associated pneumonia with a high-risk mortality rate. To increase the effectiveness of the ß-lactam (BL) antibiotics, the use of ß-lactamase inhibitors (BLI) acts as a booster when given in combination with BL antibiotics. To this aspect, we selected BL antibiotics of cefiderocol, cefepime, non-BL antibiotic eravacycline, BLI of durlobactam, avibactam, and a ß-lactam enhancer (BLE) of zidebactam. To prove our hypothesis, we determined the minimum inhibitory concentration (MIC) of various BL or non-BL/BLI or BLE combinations using broth microdilution method followed by in silico analysis of molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) identifies the potential combination. In MIC testing, eravacycline, cefepime/zidebactam, cefiderocol/zidebactam, and eravacycline in combination with zidebactam or durlobactam were found to be effective against oxacillinases (OXAs) (OXA-23/24/58 like) expressing A. baumannii isolates. The docking results of the selected ligands toward OXA-23, OXA-24, and OXA-58 had an excellent binding score ranging from -5.8 to -9.3 kcal/mol. Further, the docked complexes were subjected and evaluated using gromacs for molecular dynamics simulation of 50 ns toward selected class D OXAs. The binding energies obtained from MM-PBSA shed light on the binding efficiencies of each non-BL, BL, and BLI/BLE, thereby helping us to propose the drug combinations. Based on the MD trajectories scoring acquired, we propose using eravacycline, cefepime/zidebactam, cefiderocol/zidebactam, and eravacycline in combination with durlobactam or zidebactam would be promising for treating OXA-23, OXA-24, and OXA-58 like expressing A. baumannii infections.


Asunto(s)
Acinetobacter baumannii , Inhibidores de beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Antibacterianos/farmacología , Cefepima/farmacología , Simulación del Acoplamiento Molecular , Lactamas/farmacología , beta-Lactamasas , Cefiderocol
7.
Microb Pathog ; 178: 106064, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898591

RESUMEN

Persistent antibiotic use results in the rise of antimicrobial resistance with limited or no choice for multidrug-resistant (MDR) and extensively drug resistant (XDR) bacteria. This necessitates a need for alternative therapy to effectively combat clinical pathogens that are resistant to last resort antibiotics. The study investigates hospital sewage as a potential source of bacteriophages to control resistant bacterial pathogens. Eighty-one samples were screened for phages against selected clinical pathogens. Totally, 10 phages were isolated against A. baumannii, 5 phages against K. pneumoniae, and 16 phages were obtained against P. aeruginosa. The novel phages were observed to be strain-specific with complete bacterial growth inhibition of up to 6 h as monotherapy without antibiotics. Phage plus colistin combinations reduced the minimum-biofilm eradication concentration of colistin up to 16 folds. Notably, a cocktail of phages exhibited maximum efficacy with complete killing at 0.5-1 µg/ml colistin concentrations. Thus, phages specific to clinical strains have a higher edge in treating nosocomial pathogens with their proven anti-biofilm efficacy. In addition, analysis of phage genomes revealed close phylogenetic relations with phages reported from Europe, China, and other neighbouring countries. This study serves as a reference and can be extended to other antibiotics and phage types to assess optimum synergistic combinations to combat various drug resistant pathogens in the ongoing AMR crisis.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Colistina/farmacología , Filogenia , Antibacterianos/farmacología , Bacteriófagos/genética , Bacterias
8.
Eur J Clin Microbiol Infect Dis ; 42(5): 645-651, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905566

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) is often difficult to treat. Considering the current circumstances, there is an unquestionable need for new therapeutic options to treat CRAB infections. In the present study, the synergistic activity of sulbactam-based combination was determined against genetically characterized CRAB isolates. Non-duplicate CRAB isolates (n = 150) recovered from blood culture and endotracheal aspirates were included in this study. The minimum inhibitory concentrations (MICs) of tetracyclines (minocycline, tigecycline, eravacycline) and their comparators (meropenem, sulbactam, cefoperazone/sulbactam, ceftazidime/avibactam, and colistin) were determined using the microbroth dilution method. Six isolates were tested for the synergistic activity of various sulbactam-based combinations using time-kill experiments. Tigecycline and minocycline showed a wide spread of MICs with most isolates in the range of 1 to 16 mg/L. The MIC90 of eravacycline (0.5 mg/L) was four dilutions lower than that of tigecycline (8 mg/L). Minocycline with sulbactam was the most active dual combination against OXA-23 like (n = 2) and NDM with OXA-23 like producers (n = 1), which resulted in ≥ 2 log10 kill. The combination of ceftazidime-avibactam with sulbactam showed ≥ 3 log10 kill against all the three tested OXA-23 like producing CRAB isolates, but showed no activity against dual carbapenemase producers. Sulbactam with meropenem showed ≥ 2 log10 kill against one OXA-23 like producing CRAB isolate. The findings suggest that sulbactam-based combination may confer therapeutic benefits against CRAB infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Sulbactam/farmacología , Sulbactam/uso terapéutico , Minociclina/uso terapéutico , Meropenem/uso terapéutico , Tigeciclina/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico
9.
Pediatr Nephrol ; 38(1): 131-137, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35425998

RESUMEN

BACKGROUND: Pneumococcal infections are common in children with nephrotic syndrome. Knowledge of the commonly available serotypes and antibiotic susceptibility will help in prevention and appropriate management of pneumococcal sepsis, especially in resource-limited countries. METHODS: Demographic, clinical, and laboratory data on children with nephrotic syndrome and pneumococcal infections were extracted from the electronic medical records. RESULTS: Sixty-three isolates of pneumococci obtained from 60 children with nephrotic syndrome, over a period of 14 years, were included in the study. This represented 18% of all pneumococcal infections occurring in children during the same period. Commonly available vaccines covered up to 58% of all the serotypes causing infection. Severe disease, with shock, intensive care admission and/or meningitis, was observed in 38% children and mortality was observed in 10%. Resistance to commonly used antibiotics was not observed, except for erythromycin. CONCLUSIONS: Pneumococcal sepsis was observed to be common in children with nephrotic syndrome and results in significant morbidity and mortality. Commonly used antibiotics were observed to be effective in management of the infections.


Asunto(s)
Bacteriemia , Síndrome Nefrótico , Infecciones Neumocócicas , Niño , Humanos , Lactante , Síndrome Nefrótico/complicaciones , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/epidemiología , Países en Desarrollo , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae , Antibacterianos/uso terapéutico , Vacunas Neumococicas/uso terapéutico
10.
Ann Clin Microbiol Antimicrob ; 22(1): 55, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408075

RESUMEN

Infections in critically-ill patients caused by extensively-drug-resistant (XDR)-Pseudomonas aeruginosa are challenging to manage due to paucity of effective treatment options. Cefepime/zidebactam, which is currently in global Phase 3 clinical development (Clinical Trials Identifier: NCT04979806, registered on July 28, 2021) is a novel mechanism of action based ß-lactam/ ß-lactam-enhancer combination with a promising activity against a broad-range of Gram-negative pathogens including XDR P. aeruginosa. We present a case report of an intra-abdominal infection-induced sepsis patient infected with XDR P. aeruginosa and successfully treated with cefepime/zidebactam under compassionate use. The 50 year old female patient with past-history of bariatric surgery and recent elective abdominoplasty and liposuction developed secondary pneumonia and failed a prolonged course of polymyxins. The organism repeatedly isolated from the patient was a New-Delhi metallo ß-lactamase-producing XDR P. aeruginosa resistant to ceftazidime/avibactam, imipenem/relebactam and ceftolozane/tazobactam, susceptible only to cefepime/zidebactam. As polymyxins failed to rescue the patient, cefepime/zidebactam was administered under compassionate grounds leading to discharge of patient in stable condition. The present case highlights the prevailing precarious scenario of antimicrobial resistance and the need for novel antibiotics to tackle infections caused by XDR phenotype pathogens.


Asunto(s)
Infecciones Intraabdominales , Infecciones por Pseudomonas , Sepsis , Humanos , Cefepima/uso terapéutico , Cefepima/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Ensayos de Uso Compasivo , Cefalosporinas/uso terapéutico , Cefalosporinas/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Monobactamas/farmacología , Pseudomonas aeruginosa , beta-Lactamasas/genética , Sepsis/tratamiento farmacológico , Infecciones Intraabdominales/tratamiento farmacológico , Polimixinas , Pruebas de Sensibilidad Microbiana
11.
Indian J Med Res ; 157(5): 395-402, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37322632

RESUMEN

Background & objectives: Sepsis, including neonatal sepsis, remains a prevalent cause of morbidity and mortality in low- and middle-income countries such as India, representing 85 per cent of all sepsis-related deaths globally. Early diagnosis and timely initiation of treatment is challenging due to non-specific clinical manifestations and non-availability of rapid diagnostic tests. There is an urgent need for affordable diagnostics with fast turnaround time catering to the needs of end-users. Target product profiles (TPPs) have been found instrumental in developing 'fit-for-use' diagnostics, thus reducing the time taken to facilitate development and improving diagnosis. Hitherto, no such guidance or criteria has been defined for rapid diagnostics for sepsis/neonatal sepsis. We propose an innovative approach for developing the diagnostics for sepsis screening and diagnosis which can be utilized by diagnostic developers in the country. Methods: Thr@ee-round Delphi method, including two online surveys and one virtual consultation, was adopted to define criteria for minimum and optimum attributes of TPPs and build consensus on characteristics. Expert panel (n=23) included infectious disease physicians, public health specialists, clinical microbiologists, virologists, researchers/scientists and technology experts/innovators. Results: We present a three-component product profile for sepsis diagnosis, (i) screening with high sensitivity, (ii) detection of aetiological agent, and (iii) profiling of antimicrobial susceptibility/resistance, in adults and neonates with an option of testing different considerations. An agreement of >75 per cent was achieved for all TPP characteristics by Delphi. These TPPs are tailored to the Indian healthcare settings and can also be extrapolated to other resource-constraint and high-disease burden settings. Interpretation & conclusions: Diagnostics developed using these TPPs will facilitate utilization of invested resources leading to development of the products that have potential to ease the economic burden on patient and save lives.


Asunto(s)
Sepsis Neonatal , Sepsis , Recién Nacido , Humanos , Sepsis Neonatal/diagnóstico , Sepsis/diagnóstico , Prueba de Diagnóstico Rápido , India
12.
J Cell Biochem ; 123(1): 115-127, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33998043

RESUMEN

BAG3, a co-chaperone protein with a Bcl-2-associated athanogene (BAG) domain, has diverse functionalities in protein-folding, apoptosis, inflammation, and cell cycle regulatory cross-talks. It has been well characterised in cardiac diseases, cancers, and viral pathogenesis. The multiple roles of BAG3 are attributed to its functional regions like BAG, Tryptophan-rich (WW), isoleucine-proline-valine-rich (IPV), and proline-rich (PXXP) domains. However, to study its structural impact on various functions, the experimental 3D structure of BAG3 protein was not available. Hence, the structure was predicted through in silico modelling and validated through computational tools and molecular dynamics simulation studies. To the best of our knowledge, the role of BAG3 in bacterial infections is not explicitly reported. We attempted to study them through an in-silico protein-protein interaction network and host-pathogen interaction analysis. From structure-function relationships, it was identified that the WW and PXXP domains were associated with cellular cytoskeleton rearrangement and adhesion-mediated response, which might be involved in BAG3-related intracellular bacterial proliferation. From functional enrichment analysis, Gene Ontology terms and topological matrices, 18 host proteins and 29 pathogen proteins were identified in the BAG3 interactome pertaining to Legionellosis, Tuberculosis, Salmonellosis, Shigellosis, and Pertussis through differential phosphorylation events associated with serine metabolism. Furthermore, it was evident that direct (MAPK8, MAPK14) and associated (MAPK1, HSPD1, NFKBIA, TLR2, RHOA) interactors of BAG3 could be considered as therapeutic markers to curb down intracellular bacterial propagation in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones Bacterianas/metabolismo , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Interacciones Huésped-Patógeno , Simulación de Dinámica Molecular , Mapas de Interacción de Proteínas , Apoptosis , Infecciones Bacterianas/microbiología , Proliferación Celular , Ontología de Genes , Humanos , Aprendizaje Automático , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
13.
Microb Pathog ; 170: 105694, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921951

RESUMEN

BACKGROUND: Streptococcus pneumoniae is the principal etiological agent of acute bacterial meningitis (ABM) which has fatal outcome in children and elderly. Due to poor blood-brain barrier (BBB) permeation, conventional ß-lactam antibiotics fail to establish the requisite bactericidal concentration in central nervous system leading to resistance in meningeal infections. The present study intended to identify potential therapeutic alternatives against Streptococcal meningitis. METHODS: Virtual screening, pharmacokinetics/pharmacodynamics (PK/PD) and anti-bacterial evaluations were employed to screen potential drugs. Molecular docking and structural dynamics simulations were performed to analyze the binding affinity and interaction stability of the drugs against the conventional Penicillin binding protein (PBP) targets. Screened drugs were also checked for interactions with other possible Streptococcal targets and relevant host targets. RESULTS: Non-steroidal anti-inflammatory drugs (NSAIDs) ketorolac and etodolac exhibiting high BBB-permeation and anti-bacterial potency were identified. Ketorolac and etodolac possessed uniform binding affinities against PBP1A, PBP2X, PBP2B and PBP3 with low inhibition constants (<50 µM). Against PBP2B and PBP3, higher binding affinities were observed for ketorolac (-6.45 and -6Kcal/mol respectively) and etodolac (-6.36 and -6.55Kcal/mol respectively) than penicillin (-5.95 and -5.85Kcal/mol respectively) and cefotaxime (-5.08 and -5.07Kcal/mol respectively). The binding affinities were contributed by conventional H-bonds and non-canonical interactions with active site residues of PBPs. Structural dynamics simulations further indicated the overall stability of the drug-bound complexes through minimal overall average root-mean square fluctuations (RMSFs) (<1.0 Å). The average binding affinities of Ketorolac and Etodolac with PBPs were marginally higher than other Streptococcal targets and comparable to their conventional inflammatory targets. CONCLUSION: Pharmacological and structural profiles indicated that ketorolac and etodolac can potentially subdue the cause and effects of streptococcal meningitis and hence encourage experimental validations.


Asunto(s)
Ketorolaco , Meningitis Neumocócica , Anciano , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antiinflamatorios , Antiinflamatorios no Esteroideos/farmacología , Proteínas Bacterianas , Niño , Etodolaco , Humanos , Meningitis Neumocócica/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas de Unión a las Penicilinas
14.
Genomics ; 113(4): 2171-2176, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33965548

RESUMEN

BACKGROUND: Recent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination. METHODS: Five ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae. RESULTS: Comparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1). CONCLUSION: Considering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Antibacterianos/farmacología , Resistencia a las Cefalosporinas/genética , Enterobacteriaceae/genética , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , Salmonella typhi/genética
15.
J Infect Dis ; 224(Supple 5): S494-S501, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-35238360

RESUMEN

BACKGROUND: Acute febrile illness in children is frequently treated with antibiotics. However, the inappropriate use of antibiotics has led to the emergence of multidrug-resistant pathogens. METHODS: We measured use of antibiotics for fever in 4 pediatric cohorts that were part of the Surveillance for Enteric Fever in India (SEFI) network. In this network, 24 062 children were followed up weekly, capturing information on fever and other morbidity between October 2017 and December 2019. RESULTS: An antibiotic was given in 27 183 of the 76 027 (35.8%) episodes of fever. The incidence of fever-related antibiotic use was 58.0 (95% confidence interval [CI], 57.2-58.6) per 100 child-years. The median time to initiation of antibiotics was 4 days, and in 65% of those who received an antibiotic it was initiated by the second day. Antibiotics were continued for <3 days in 24% of the episodes. Higher temperature, younger age, male sex, joint family, higher education, internet access, and availability of personal conveyance were associated with antibiotic treatment for fever. CONCLUSIONS: In developing countries where antibiotic use is not regulated, broad-spectrum antibiotics are initiated early, and often inappropriately, in febrile illness. Frequent and inappropriate use of antibiotics may increase risk of antimicrobial resistance.


Asunto(s)
Fiebre Tifoidea , Antibacterianos/uso terapéutico , Niño , Fiebre/tratamiento farmacológico , Fiebre/epidemiología , Humanos , Incidencia , India/epidemiología , Masculino , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología
16.
J Infect Dis ; 224(Supple 5): S502-S516, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-35238369

RESUMEN

BACKGROUND: Systematic studies to estimate the disease burden of typhoid and paratyphoid in India are limited. Therefore, a multicenter study on the Surveillance of Enteric Fever in India was carried out to estimate the incidence, clinical presentation, and antimicrobial resistance (AMR) trend. The data presented here represent the national burden of AMR in Salmonella Typhi and Salmonella Paratyphi A. METHODS: Antimicrobial susceptibility testing was performed for S. Typhi and S. Paratyphi A (n = 2373) isolates collected prospectively during a 2-year period from November 2017 to January 2020. RESULTS: Of 2373 Salmonella isolates, 2032 (85.6%) were identified as S. Typhi and 341 (14.4%) were S. Paratyphi A. Approximately 2% of S. Typhi were multidrug-resistant (MDR), whereas all 341 (100%) of S. Paratyphi A isolates were sensitive to the first-line antimicrobials. Among 98% of ciprofloxacin nonsusceptible isolates, resistance (minimum inhibitory concentration [MIC] >0.5 µg/mL) was higher in S. Typhi (37%) compared with S. Paratyphi A (20%). Azithromycin susceptibility was 99.9% and 100% with a mean MIC of 4.98 µg/mL for S. Typhi and 7.39 µg/mL for S. Paratyphi A respectively. Ceftriaxone was the only agent that retained 100% susceptibility. Moreover, beta-lactam/beta-lactamase inhibitors showed potent in vitro activity against the study isolates. CONCLUSIONS: Data obtained from this systematic surveillance study confirms the declining trend of MDR Salmonella isolates from India. The higher prevalence of ciprofloxacin nonsusceptibility enforces to limit its use and adhere to the judicious usage of azithromycin and ceftriaxone for enteric fever management.


Asunto(s)
Salmonella paratyphi A , Fiebre Tifoidea , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Azitromicina/uso terapéutico , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Farmacorresistencia Bacteriana , Humanos , India/epidemiología , Pruebas de Sensibilidad Microbiana , Salmonella typhi , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología
17.
J Infect Dis ; 224(12 Suppl 2): S161-S173, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469555

RESUMEN

BACKGROUND: The World Health Organization (WHO) coordinates the Global Invasive Bacterial Vaccine-Preventable Diseases (IB-VPD) Surveillance Network to support vaccine introduction decisions and use. The network was established to strengthen surveillance and laboratory confirmation of meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. METHODS: Sentinel hospitals report cases of children <5 years of age hospitalized for suspected meningitis. Laboratories report confirmatory testing results and strain characterization tested by polymerase chain reaction. In 2019, the network included 123 laboratories that follow validated, standardized testing and reporting strategies. RESULTS: From 2014 through 2019, >137 000 suspected meningitis cases were reported by 58 participating countries, with 44.6% (n = 61 386) reported from countries in the WHO African Region. More than half (56.6%, n = 77 873) were among children <1 year of age, and 4.0% (n = 4010) died among those with reported disease outcome. Among suspected meningitis cases, 8.6% (n = 11 798) were classified as probable bacterial meningitis. One of 3 bacterial pathogens was identified in 30.3% (n = 3576) of these cases, namely S. pneumoniae (n = 2177 [60.9%]), H. influenzae (n = 633 [17.7%]), and N. meningitidis (n = 766 [21.4%]). Among confirmed bacterial meningitis cases with outcome reported, 11.0% died; case fatality ratio varied by pathogen (S. pneumoniae, 12.2%; H. influenzae, 6.1%; N. meningitidis, 11.0%). Among the 277 children who died with confirmed bacterial meningitis, 189 (68.2%) had confirmed S. pneumoniae. The proportion of pneumococcal cases with pneumococcal conjugate vaccine (PCV) serotypes decreased as the number of countries implementing PCV increased, from 77.8% (n = 273) to 47.5% (n = 248). Of 397 H. influenzae specimens serotyped, 49.1% (n = 195) were type b. Predominant N. meningitidis serogroups varied by region. CONCLUSIONS: This multitier, global surveillance network has supported countries in detecting and serotyping the 3 principal invasive bacterial pathogens that cause pediatric meningitis. Streptococcus pneumoniae was the most common bacterial pathogen detected globally despite the growing number of countries that have nationally introduced PCV. The large proportions of deaths due to S. pneumoniae reflect the high proportion of meningitis cases caused by this pathogen. This global network demonstrated a strong correlation between PCV introduction status and reduction in the proportion of pneumococcal meningitis infections caused by vaccine serotypes. Maintaining case-based, active surveillance with laboratory confirmation for prioritized vaccine-preventable diseases remains a critical component of the global agenda in public health.The World Health Organization (WHO)-coordinated Invasive Bacterial Vaccine-Preventable Disease (IB-VPD) Surveillance Network reported data from 2014 to 2019, contributing to the estimates of the disease burden and serotypes of pediatric meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.


Asunto(s)
Salud Global/estadística & datos numéricos , Meningitis Bacterianas/prevención & control , Meningitis Neumocócica/prevención & control , Vigilancia de Guardia , Enfermedades Prevenibles por Vacunación/epidemiología , Vacunas Conjugadas/administración & dosificación , Niño , Preescolar , Haemophilus influenzae , Humanos , Lactante , Meningitis Bacterianas/epidemiología , Meningitis Neumocócica/epidemiología , Neisseria meningitidis , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae , Vacunación/estadística & datos numéricos , Enfermedades Prevenibles por Vacunación/microbiología , Organización Mundial de la Salud
18.
J Cell Biochem ; 122(12): 1946-1957, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34597421

RESUMEN

Emerging nosocomial strains of Acinetobacter baumannii are of recent concern as they are expressing extensive drug resistance (XDR). Using whole-genome sequencing and molecular characterisation analysis, the current study reveals the presence of carbapenemase genes in 92.86% of studied Indian isolates. These included blaOXA-51 , blaOXA-23 , blaOXA-58 , and blaNDM genes, with over a third expressing dual carbapenemase genes. As per the MLST scheme, IC2Oxf /CC2Pas was the predominant clone, with 57.14% isolates belonging to this lineage. The presence of these carbapenemase genes resulted in sulbactam (SUL) resistance (MIC: 16-256 µg/ml) in all of the studied isolates. The efficacy of durlobactam (DUR), a novel ß-lactamase inhibitor that also inhibits PBP2 was assessed through in silico intermolecular interaction analysis. Several nonsynonymous single nucleotide polymorphisms were identified in PBP2 (G264S, I108V, S259T) and PBP3 (A515V, T526S) sequences. Minimal variations were recorded in the protein backbone dynamics in active-site motifs of wild-type and mutants, which correlated with negligible binding energy fluctuations for the PBP3-SUL (-5.85 ± 0.04 kcal/mol) and PBP2-DUR (-5.16 ± 0.66 kcal/mol) complexes. Furthermore, higher binding affinities and low inhibition constants were noted in OXA23-DUR (-7.36 kcal/mol; 4.01 µM), OXA58-DUR (-6.44 kcal/mol; 19.07 µM), and NDM-DUR (-6.82 kcal/mol; 10.01 µM) complexes when compared with the conventional drugs avibactam and aztreonam. Stable interaction profiles of DUR with carbapenemases can possibly restore SUL activity against both PBP3WT and PBP3MTs . The study establishes the efficacy of the novel SUL-DUR combination as a successful treatment strategy in combating emerging XDR strains of A. baumannii.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Compuestos de Azabiciclo/farmacología , Farmacorresistencia Bacteriana Múltiple , Mutación , Proteínas de Neoplasias , Sulbactam/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/genética , Infecciones por Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
19.
Bull World Health Organ ; 99(8): 562-571, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34354311

RESUMEN

OBJECTIVE: To assess the preparedness of veterinary laboratories in India to participate in an integrated antimicrobial resistance surveillance network and to address gaps in provision identified. METHODS: The Indian Council of Medical Research and the Indian Council of Agricultural Research collaborated: (i) to select eight nationally representative veterinary microbiology laboratories whose capacity for participating in an integrated antimicrobial resistance surveillance network would be assessed using a standardized tool; (ii) to identify gaps in provision from the assessment findings; and (iii) to develop a plan, and take the necessary steps to address these gaps in consultation with participating organizations. FINDINGS: The main gaps in provision identified were: (i) a lack of dedicated funding for antimicrobial resistance surveillance; (ii) the absence of standard guidelines for antimicrobial susceptibility testing; (iii) a shortage of reference strains for testing and quality assurance; and (iv) the absence of mechanisms for sharing data. We addressed these gaps by creating a veterinary standard operating procedure for antimicrobial susceptibility testing, by carrying out a validation exercise to identify problems with implementing the procedure and by conducting capacity-building workshops for veterinary laboratories. CONCLUSION: Antimicrobial resistance surveillance networks depend on the availability of accurate, quality-controlled testing. The challenges identified in creating an integrated surveillance network for India can be overcome by developing a comprehensive plan for improving laboratory capacity in human, veterinary and environmental sectors that is supported by the necessary funds. The study's findings may provide guidance for other low- and middle-income countries planning to develop a similar network.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana/efectos de los fármacos , Antibacterianos/farmacología , Creación de Capacidad , Estudios Transversales , Humanos , India , Laboratorios , Pruebas de Sensibilidad Microbiana , Vigilancia de Guardia
20.
Eur J Clin Microbiol Infect Dis ; 40(3): 461-475, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33009595

RESUMEN

Increasing burden of carbapenem resistance and resultant difficult-to-treat infections are of particular concern due to the lack of effective and safe treatment options. More recently, several new agents with activity against certain multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative pathogens have been approved for clinical use. These include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. For the management of MBL infections, clinically used triple combination comprising ceftazidime-avibactam and aztreonam is hindered due to non-availability of antimicrobial susceptibility testing methods and lack of information on potential drug-drug interaction leading to PK changes impacting its safety and efficacy. Moreover, in several countries including Indian subcontinent and developing countries, these new agents are yet to be made available. Under these circumstances, polymyxins are the only last resort for the treatment of carbapenem-resistant infections. With the recent evidence of suboptimal PK/PD particularly in lung environment, limited efficacy and increased nephrotoxicity associated with polymyxin use, the Clinical and Laboratory Standards Institute (CLSI) has revised both colistin and polymyxin B breakpoints. Thus, polymyxins 'intermediate' breakpoint for Enterobacterales, P. aeruginosa, and Acinetobacter spp. are now set at ≤ 2 mg/L, implying limited clinical efficacy even for isolates with the MIC value 2 mg/L. This change has questioned the dependency on polymyxins in treating XDR infections. In this context, recently approved cefiderocol and phase 3 stage combination drug cefepime-zidebactam assume greater significance due to their potential to act as polymyxin-supplanting therapies.


Asunto(s)
Antibacterianos/uso terapéutico , Polimixinas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/normas , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Países en Desarrollo , Farmacorresistencia Bacteriana/efectos de los fármacos , Quimioterapia Combinada , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/normas , Polimixinas/farmacología , Polimixinas/normas , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/clasificación , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA