Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 145(15): 154703, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27782471

RESUMEN

Silicon 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of silicon nanocrystals have been examined as a function of nanocrystal size (3-100 nm), varying surface functionalization (hydrogen or 1-pentyl termination), or embedded in oxide. The NEXAFS spectra are characterized as a function of nanocrystal size and surface functionalization. Clear spectroscopic evidence for long range order is observed silicon nanocrystals that are 5-8 nm in diameter or larger. Energy shifts in the silicon 1s NEXAFS spectra of covalently functionalized silicon nanocrystals with changing size are attributed to surface chemical shifts and not to quantum confinement effects.

2.
Ecotoxicology ; 23(7): 1172-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24861137

RESUMEN

This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.


Asunto(s)
Daphnia/metabolismo , Oro/farmacocinética , Nanopartículas/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Animales , Pruebas de Toxicidad Aguda
3.
Nano Lett ; 13(6): 2516-21, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23662693

RESUMEN

We have applied scanning tunneling spectroscopy in studies of the electronic level structure of surface-functionalized colloidal Si nanocrystals (Si-NCs) as a function of their size for various capping ligands. The energy gaps extracted from the tunneling spectra increase with decreasing NC size, manifesting the effect of quantum confinement. This is consistent with the blueshift revealed by photoluminescence (PL) from dodecene functionalized Si-NCs. The tunneling spectra measured on NCs functionalized with NH4Br or allylamine show band-edge shifts toward higher energies, akin to p-type doping. This behavior can be accounted for by the combined contributions of the ligands' dipole moments and charge transfer between a Si-NC and its surface groups. Concomitantly, size-independent PL spectra, which cannot be associated with NC band gap variations, were observed for the latter Si-NCs.

4.
Opt Express ; 19(22): 21540-51, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109003

RESUMEN

Capillaries present a promising structure for microfluidic refractive index sensors. We demonstrate a capillary-type fluorescent core microcavity sensor based on whispering gallery mode (WGM) resonances. The device consists of a microcapillary having a layer of fluorescent silicon quantum dots (QDs) coated on the channel surface. The high effective index of the QD layer confines the electric field near the capillary channel and causes the development of WGM resonances in the fluorescence spectrum. Solutions consisting of sucrose dissolved in water were pumped through the capillary while the fluorescence WGMs were measured with a spectrometer. The device showed a refractometric sensitivity of 9.8 nm/RIU (up to 13.8 nm/RIU for higher solution refractive index) and a maximum detection limit of ~7.2 x 10(-3) RIU. Modeling the field inside the capillary structure, which is analogous to a layered hollow ring resonator, shows that sensitivities as high as 100 nm/RIU and detection limits as low as ~10(-5) RIU may be achievable by optimizing the QD film thickness.

5.
Chem Commun (Camb) ; 53(21): 3114-3117, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28245018

RESUMEN

Porous silicon nanoparticles (Si-NPs) prepared via magnesiothermic reduction were used to convert carbon dioxide (CO2) into methanol. The hydride surface of the silicon nanoparticles acted as a CO2 reducing reagent without any catalyst at temperatures above 100 °C. The Si nanoparticles were reused up to four times without significant loss in methanol yields. The reduction process was monitored using in situ FT-IR and the materials were characterized using SEM, TEM, NMR, XPS, and powder XRD techniques. The influence of reaction temperature, pressure, and Si-NP concentration on CO2 reduction were also investigated. Finally, Si particles produced directly from sand were used to convert CO2 to methanol.

6.
Nanoscale ; 9(23): 7739-7744, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28574084

RESUMEN

Diaryliodonium salts were found to initiate hydrosilylation reactions on the surface of silicon nanosheets as well as silicon nanocrystals of different sizes. A variety of different functional substrates can be used to stabilize the surface of the photoluminescent materials. Additionally, the combination of hydride terminated silicon nanomaterials with diaryliodonium salts was found to initiate cationic ring opening polymerization, demonstrating the potential of silicon based nanomaterials as coinitiators and enabling a mild, straightforward reaction method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA