Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 146(4): 565-583, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548694

RESUMEN

Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-ß levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-ß and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Colina/farmacología , Factor de Necrosis Tumoral alfa , Placa Amiloide/patología , Péptidos beta-Amiloides/metabolismo , Acetilcolina , Inflamación , Proteínas tau/metabolismo
2.
J Neuroinflammation ; 19(1): 193, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35897073

RESUMEN

BACKGROUND: Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. METHODS: Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aß40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. RESULTS: Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aß40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. CONCLUSIONS: Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aß, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.


Asunto(s)
Enfermedad de Alzheimer , Glicina , Herbicidas , Factor de Necrosis Tumoral alfa , Animales , Encéfalo , Cromatografía Liquida , Citocinas/genética , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Glifosato
3.
Acta Neuropathol ; 142(2): 279-294, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33978814

RESUMEN

Evidence indicates that tau hyper-phosphorylation and subsequent neurofibrillary tangle formation contribute to the extensive neuronal death in Alzheimer's disease (AD) and related tauopathies. Recent work has identified that increased tau acetylation can promote tau phosphorylation. Tau acetylation occurs at lysine 280 resulting from increased expression of the lysine acetyltransferase p300. The exact upstream mechanisms mediating p300 expression remain elusive. Additional work highlights the role of the epigenome in tau pathogenesis, suggesting that dysregulation of epigenetic proteins may contribute to acetylation and hyper-phosphorylation of tau. Here, we identify and focus on the histone-binding subunit of the Nucleosome Remodeling and Deacetylase (NuRD) complex: Retinoblastoma-Binding Protein 7 (Rbbp7). Rbbp7 chaperones chromatin remodeling proteins to their nuclear histone substrates, including histone acetylases and deacetylases. Notably, Rbbp7 binds to p300, suggesting that it may play a role in modulating tau acetylation. We interrogated Rbbp7 in post-mortem brain tissue, cell lines and mouse models of AD. We found reduced Rbbp7 mRNA expression in AD cases, a significant negative correlation with CERAD (neuritic plaque density) and Braak Staging (pathogenic tau inclusions) and a significant positive correlation with post-mortem brain weight. We also found a neuron-specific downregulation of Rbbp7 mRNA in AD patients. Rbbp7 protein levels were significantly decreased in 3xTg-AD and PS19 mice compared to NonTg, but no decreases were found in APP/PS1 mice that lack tau pathology. In vitro, Rbbp7 overexpression rescued TauP301L-induced cytotoxicity in immortalized hippocampal cells and primary cortical neurons. In vivo, hippocampal Rbbp7 overexpression rescued neuronal death in the CA1 of PS19 mice. Mechanistically, we found that increased Rbbp7 reduced p300 levels, tau acetylation at lysine 280 and tau phosphorylation at AT8 and AT100 sites. Collectively, these data identify a novel role of Rbbp7, protecting against tau-related pathologies, and highlight its potential as a therapeutic target in AD and related tauopathies.


Asunto(s)
Acetilación , Neuronas/patología , Proteína 7 de Unión a Retinoblastoma/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteína 7 de Unión a Retinoblastoma/genética
4.
Mol Psychiatry ; 25(10): 2620-2629, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-30622336

RESUMEN

The lack of effective treatments for Alzheimer's disease (AD) is alarming, considering the number of people currently affected by this disorder and the projected increase over the next few decades. Elevated homocysteine (Hcy) levels double the risk of developing AD. Choline, a primary dietary source of methyl groups, converts Hcy to methionine and reduces age-dependent cognitive decline. Here, we tested the transgenerational benefits of maternal choline supplementation (ChS; 5.0 g/kg choline chloride) in two generations (Gen) of APP/PS1 mice. We first exposed 2.5-month-old mice to the ChS diet and allowed them to breed with each other to generate Gen-1 mice. Gen-1 mice were exposed to the ChS diet only during gestation and lactation; once weaned at postnatal day 21, Gen-1 mice were then kept on the control diet for the remainder of their life. We also bred a subset of Gen-1 mice to each other and obtained Gen-2 mice; these mice were never exposed to ChS. We found that ChS reduced Aß load and microglia activation, and improved cognitive deficits in old Gen-1 and Gen-2 APP/PS1 mice. Mechanistically, these changes were linked to a reduction in brain Hcy levels in both generations. Further, RNA-Seq data from APP/PS1 hippocampal tissue revealed that ChS significantly changed the expression of 27 genes. These genes were enriched for inflammation, histone modifications, and neuronal death functional classes. Our results are the first to demonstrate a transgenerational benefit of ChS and suggest that modifying the maternal diet with additional choline reduces AD pathology across multiple generations.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Colina/farmacología , Suplementos Dietéticos , Homocisteína/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Colina/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos
6.
Neurobiol Dis ; 70: 32-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24932939

RESUMEN

Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large.


Asunto(s)
Prosencéfalo Basal/patología , Colina/administración & dosificación , Neuronas Colinérgicas/patología , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Aprendizaje por Laberinto/fisiología , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Recuento de Células , Tamaño de la Célula , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Lactancia , Masculino , Ratones Transgénicos , Embarazo , Distribución Aleatoria , Memoria Espacial/fisiología , Trisomía
7.
Neurobiol Aging ; 141: 160-170, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38964013

RESUMEN

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.

8.
Neurobiol Dis ; 58: 92-101, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23643842

RESUMEN

In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.


Asunto(s)
Colina/administración & dosificación , Síndrome de Down/patología , Hipocampo/patología , Discapacidades para el Aprendizaje/prevención & control , Neurogénesis/genética , Fenómenos Fisiologicos de la Nutrición Prenatal/efectos de los fármacos , Percepción Espacial/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/genética , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Síndrome de Down/complicaciones , Síndrome de Down/genética , Femenino , Discapacidades para el Aprendizaje/etiología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Neuropéptidos/metabolismo , Embarazo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal
9.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645898

RESUMEN

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify the molecular networks that underpin the sex-associated risk of AD. Recent efforts have identified PIN1 as a key regulator of tau phosphorylation signaling pathway. Pin1 is the only gene, to date, that when deleted can cause both tau and Aß-related pathologies in an age-dependent manner. We analyzed multiple brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels, in an aging and AD cohort, which revealed reduced PIN1 levels driven by females. Then, we validated this observation in an independent dataset (ROS/MAP) which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function, in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again, driven predominantly by female subjects. Our results show that while both male and female AD patients show decreased PIN1 expression, changes occur before the onset of clinical symptoms of AD in females and correlate to early events associated with AD risk (e.g., synaptic dysfunction). These changes are specific to neurons, and may be a potential prognostic marker to assess AD risk in the aging population and even more so in AD females with increased risk of AD.

10.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214864

RESUMEN

Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.

11.
Aging Cell ; 22(2): e13775, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642814

RESUMEN

There is an urgent need to identify modifiable environmental risk factors that reduce the incidence of Alzheimer's disease (AD). The B-like vitamin choline plays key roles in body- and brain-related functions. Choline produced endogenously by the phosphatidylethanolamine N-methyltransferase protein in the liver is not sufficient for adequate physiological functions, necessitating daily dietary intake. ~90% of Americans do not reach the recommended daily intake of dietary choline. Thus, it's imperative to determine whether dietary choline deficiency increases disease outcomes. Here, we placed 3xTg-AD, a model of AD, and non-transgenic (NonTg) control mice on either a standard laboratory diet with sufficient choline (ChN; 2.0 g/kg choline bitartrate) or a choline-deficient diet (Ch-; 0.0 g/kg choline bitartrate) from 3 to 12 (early to late adulthood) months of age. A Ch- diet reduced blood plasma choline levels, increased weight, and impaired both motor function and glucose metabolism in NonTg mice, with 3xTg-AD mice showing greater deficits. Tissue analyses showed cardiac and liver pathology, elevated soluble and insoluble Amyloid-ß and Thioflavin S structures, and tau hyperphosphorylation at various pathological epitopes in the hippocampus and cortex of 3xTg-AD Ch- mice. To gain mechanistic insight, we performed unbiased proteomics of hippocampal and blood plasma samples. Dietary choline deficiency altered hippocampal networks associated with microtubule function and postsynaptic membrane regulation. In plasma, dietary choline deficiency altered protein networks associated with insulin metabolism, mitochondrial function, inflammation, and fructose metabolic processing. Our data highlight that dietary choline intake is necessary to prevent systems-wide organ pathology and reduce hallmark AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Deficiencia de Colina , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Colina , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Ingestión de Alimentos , Modelos Animales de Enfermedad , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide
12.
Aging Cell ; 21(4): e13590, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35290711

RESUMEN

Down syndrome (DS) is a leading cause of intellectual disability that also results in hallmark Alzheimer's disease (AD) pathologies such as amyloid beta (Aß) plaques and hyperphosphorylated tau. The Ts65Dn mouse model is commonly used to study DS, as trisomic Ts65Dn mice carry 2/3 of the triplicated gene homologues as occur in human DS. The Ts65Dn strain also allows investigation of mechanisms common to DS and AD pathology, with many of these triplicated genes implicated in AD; for example, trisomic Ts65Dn mice overproduce amyloid precursor protein (APP), which is then processed into soluble Aß40-42 fragments. Notably, Ts65Dn mice show alterations to the basal forebrain, which parallels the loss of function in this region observed in DS and AD patients early on in disease progression. However, a complete picture of soluble Aß40-42 accumulation in a region-, age-, and sex-specific manner has not yet been characterized in the Ts65Dn model. Here, we show that trisomic mice accumulate soluble Aß40-42 in the basal forebrain, frontal cortex, hippocampus, and cerebellum in an age-specific manner, with elevation in the frontal cortex and hippocampus as early as 4 months of age. Furthermore, we detected sex differences in accumulation of Aß40-42 within the basal forebrain, with females having significantly higher Aß40-42 at 7-8 months of age. Lastly, we show that APP expression in the basal forebrain and hippocampus inversely correlates with Aß40-42  levels. This spatial and temporal characterization of soluble Aß40-42 in the Ts65Dn model allows for further exploration of the role soluble Aß plays in the progression of other AD-like pathologies in these key brain regions.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos
13.
Front Aging Neurosci ; 13: 720214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483889

RESUMEN

Transgenic rodent models of Alzheimer's disease (AD) were designed to study mechanisms of pathogenesis and connect these mechanisms with cognitive decline. Measurements of cognition in rodents can be confounded, however, by human handling and interaction; the IntelliCage was created to circumvent these issues while measuring various facets of cognition in a social environment with water consumption as the primary motivator for task completion. Here, for the first time, we examined the behavioral performance of 3xTg-AD mice in the IntelliCage. Seven- to 9-month-old female 3xTg-AD and non-transgenic (NonTg) mice were tested for 29 days in the IntelliCage to measure prefrontal cortical and hippocampal function. We found that a higher percentage of NonTg mice (86.96%) were able to successfully complete the training (adaptation) phases compared to their 3xTg-AD (57.14%) counterparts. Furthermore, the 3xTg-AD mice showed impairments in attention and working memory. Interestingly, we found that differences in body and brain weight between NonTg and 3xTg-AD mice were associated with whether mice were able to complete the IntelliCage tasks. 3xTg-AD mice that completed IntelliCage tasks had lower cortical insoluble amyloid-ß40 fractions than their 3xTg-AD counterparts who failed to complete the tasks. Collectively, these results demonstrate deficits in cognition in the 3xTg-AD mouse and inform scientists of important factors to consider when testing this transgenic model in the IntelliCage.

14.
Neurobiol Aging ; 101: 130-140, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33610962

RESUMEN

Transgenic rodent models were created to decipher pathogenic mechanisms associated with Alzheimer's disease (AD), and behavioral apparatuses such as the Morris water maze (MWM) are used to assess cognition in mice. The IntelliCage was designed to circumvent issues of traditional behavioral tests, such as frequent human handling. The motivation to complete IntelliCage tasks is water consumption, which is less stressful than escaping from a pool in the MWM. Here, we examined behavioral performances of mice in the IntelliCage and MWM tasks. Twelve-month-old male and female APP/PS1 and non-transgenic mice first underwent 42 days of IntelliCage testing to assess prefrontal cortical and hippocampal function followed by MWM testing for six days. We found that females performed better in the IntelliCage while males performed superiorly in the MWM. Mechanistically, female APP/PS1 mice had a higher Amyloid-ß plaque load throughout the brain, which is inconsistent with their performance in the IntelliCage. Collectively, these results inform scientists about the sex-based differences when testing animals in different behavioral paradigms that tap similar cognitive functions.


Asunto(s)
Amiloidosis/fisiopatología , Amiloidosis/psicología , Cognición/fisiología , Prueba del Laberinto Acuático de Morris/fisiología , Caracteres Sexuales , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/fisiología , Humanos , Masculino , Ratones Transgénicos , Motivación , Corteza Prefrontal/fisiología
15.
Front Aging Neurosci ; 13: 723046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690739

RESUMEN

Maternal choline supplementation (MCS) has emerged as a promising therapy to lessen the cognitive and affective dysfunction associated with Down syndrome (DS). Choline is an essential nutrient, especially important during pregnancy due to its wide-ranging ontogenetic roles. Using the Ts65Dn mouse model of DS, our group has demonstrated that supplementing the maternal diet with additional choline (4-5 × standard levels) during pregnancy and lactation improves spatial cognition, attention, and emotion regulation in the adult offspring. The behavioral benefits were associated with a rescue of septohippocampal circuit atrophy. These results have been replicated across a series of independent studies, although the magnitude of the cognitive benefit has varied. We hypothesized that this was due, at least in part, to differences in the age of the subjects at the time of testing. Here, we present new data that compares the effects of MCS on the attentional function of adult Ts65Dn offspring, which began testing at two different ages (6 vs. 12 months of age). These data replicate and extend the results of our previous reports, showing a clear pattern indicating that MCS has beneficial effects in Ts65Dn offspring throughout life, but that the magnitude of the benefit (relative to non-supplemented offspring) diminishes with aging, possibly because of the onset of Alzheimer's disease-like neuropathology. In light of growing evidence that increased maternal choline intake during pregnancy is beneficial to the cognitive and affective functioning of all offspring (e.g., neurotypical and DS), the addition of this nutrient to a prenatal vitamin regimen would be predicted to have population-wide benefits and provide early intervention for fetuses with DS, notably including babies born to mothers unaware that they are carrying a fetus with DS.

16.
Biochem Biophys Res Commun ; 379(2): 267-71, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19101518

RESUMEN

Congenital disorders of glycosylation (CDG) comprise a family of inherited multisystemic disorders resulting from the deficiency of glycosylation pathways. N-glycosylation defects are classified as two biochemical and genetic established types, of which CDG-Ia is the most frequent. We performed 2-DE proteomic analysis on serum from two functional hemizygous CDG-Ia patients bearing T237M and D65Y missense changes. Comparative analysis of control/patient serum proteome allowed us to identify differential expression of 14 proteins. The most remarkable groups included proteins involved in immune response, coagulation mechanism and tissue protection against oxidative stress. The patient bearing D65Y mutation had less favourable clinical outcome and showed more abnormalities in the spot patterns, suggesting that the proteomic results might also be correlated with the phenotype of CDG patients. This study describes for the first time the differential expression of alpha(2)-macroglobulin, afamin, fibrin and fibrinogen in CDG disorder and shows how the proteomic approach might be useful for understanding its physiopathology.


Asunto(s)
Errores Innatos del Metabolismo/sangre , Proteínas/análisis , Proteoma/análisis , Suero/metabolismo , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/sangre , Niño , Preescolar , Electroforesis en Gel Bidimensional , Femenino , Fibrina/análisis , Fibrina/biosíntesis , Fibrinógeno/análisis , Fibrinógeno/biosíntesis , Glicoproteínas/biosíntesis , Glicoproteínas/sangre , Glicosilación , Humanos , Focalización Isoeléctrica , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Biosíntesis de Proteínas , Proteómica , Albúmina Sérica/biosíntesis , Albúmina Sérica Humana , Transferrina/análisis , Transferrina/biosíntesis , alfa 1-Antitripsina/biosíntesis , alfa 1-Antitripsina/sangre , alfa-Macroglobulinas/análisis , alfa-Macroglobulinas/biosíntesis
17.
Aging Cell ; 18(6): e13037, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560162

RESUMEN

Currently, there are no effective therapies to ameliorate the pathological progression of Alzheimer's disease (AD). Evidence suggests that environmental factors may contribute to AD. Notably, dietary nutrients are suggested to play a key role in mediating mechanisms associated with brain function. Choline is a B-like vitamin nutrient found in common foods that is important in various cell functions. It serves as a methyl donor and as a precursor for production of cell membranes. Choline is also the precursor for acetylcholine, a neurotransmitter which activates the alpha7 nicotinic acetylcholine receptor (α7nAchR), and also acts as an agonist for the Sigma-1 R (σ1R). These receptors regulate CNS immune response, and their dysregulation contributes to AD pathogenesis. Here, we tested whether dietary choline supplementation throughout life reduces AD-like pathology and rescues memory deficits in the APP/PS1 mouse model of AD. We exposed female APP/PS1 and NonTg mice to either a control choline (1.1 g/kg choline chloride) or a choline-supplemented diet (5.0 g/kg choline chloride) from 2.5 to 10 months of age. Mice were tested in the Morris water maze to assess spatial memory followed by neuropathological evaluation. Lifelong choline supplementation significantly reduced amyloid-ß plaque load and improved spatial memory in APP/PS1 mice. Mechanistically, these changes were linked to a decrease of the amyloidogenic processing of APP, reductions in disease-associated microglial activation, and a downregulation of the α7nAch and σ1 receptors. Our results demonstrate that lifelong choline supplementation produces profound benefits and suggest that simply modifying diet throughout life may reduce AD pathology.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Colina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Longevidad/efectos de los fármacos , Microglía/efectos de los fármacos , Nootrópicos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Colina/administración & dosificación , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Suplementos Dietéticos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Nootrópicos/administración & dosificación
18.
Aging Cell ; 18(1): e12873, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30488653

RESUMEN

Accumulation of amyloid-ß (Aß) and fibrillary tangles, as well as neuroinflammation and memory loss, are hallmarks of Alzheimer's disease (AD). After almost 15 years from their generation, 3xTg-AD mice are still one of the most used transgenic models of AD. Converging evidence indicates that the phenotype of 3xTg-AD mice has shifted over the years and contradicting reports about onset of pathology or cognitive deficits are apparent in the literature. Here, we assessed Aß and tau load, neuroinflammation, and cognitive changes in 2-, 6-, 12-, and 20-month-old female 3xTg-AD and nontransgenic (NonTg) mice. We found that ~80% of the mice analyzed had Aß plaques in the caudal hippocampus at 6 months of age, while 100% of them had Aß plaques in the hippocampus at 12 months of age. Cortical Aß plaques were first detected at 12 months of age, including in the entorhinal cortex. Phosphorylated Tau at Ser202/Thr205 and Ser422 was apparent in the hippocampus of 100% of 6-month-old mice, while only 50% of mice showed tau phosphorylation at Thr212/Ser214 at this age. Neuroinflammation was first evident in 6-month-old mice and increased as a function of age. These neuropathological changes were clearly associated with progressive cognitive decline, which was first apparent at 6 months of age and became significantly worse as the mice aged. These data indicate a consistent and predictable progression of the AD-like pathology in female 3xTg-AD mice, and will facilitate the design of future studies using these mice.


Asunto(s)
Enfermedad de Alzheimer/patología , Progresión de la Enfermedad , Envejecimiento/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Gliosis/patología , Hipocampo/metabolismo , Hipocampo/patología , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Fosforilación , Placa Amiloide/patología , Factores de Tiempo , Proteínas tau/metabolismo
19.
Med Clin (Barc) ; 130(15): 577-9, 2008 Apr 26.
Artículo en Español | MEDLINE | ID: mdl-18462636

RESUMEN

BACKGROUND AND OBJECTIVE: Alternating hemiplegia of childhood (AHC) is a rare disease of unknown etiology characterized by early onset of recurrent episodes of hemiplegia, tonic or dystonic attacks and abnormal ocular movements with a fatal outcome to severe encephalopathy. Our aim was to describe the clinical manifestations, precipitating factors, complementary studies results, long-term outcome and response to treatment in a series of AHC patients. PATIENTS AND METHOD: Descriptive, retrospective and multicenter study in 17 Spanish patients aged between 1-24 years who fulfilled diagnostic criteria of AHC. RESULTS: Twelve cases fulfilled criteria of typical AHC and 5 were atypical. Mean age at diagnosis was 26 months and 47% cases had a family history of migraine. Mean age at onset of hemiplegic attacks was 9.3 months. Symptoms disappeared during sleep and precipitating factors were present in 94% cases. Most patients developed mental retardation with ataxia and dysarthria. Work-up tests (metabolic, neurophysiologic and radiologic) were normal or nonspecific. In 3 patients mutations in CACNA1A, ATP1A2 were ruled out. Positive responses to flunarizine was observed in 81%. CONCLUSIONS: The characteristic clinical symptoms are still the clue to make the diagnosis of this disease, with a lack of genetic, biochemical or radiological specific studies. Early diagnosis avoids invasive tests, repeating procedures, using ineffective and potentially toxic treatments, and allows to start treatment with flunarizine without delay. More genetic studies are needed in broader series of patients.


Asunto(s)
Hemiplejía/diagnóstico , Hemiplejía/terapia , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA