Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(5): e0197921, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019720

RESUMEN

Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilized a combination of biochemical, proteomic, and biophysical approaches to characterize the interaction between the viral polymerase and Rab11a. Using pulldown assays, we showed that vRNPs but not complementary RNPs (cRNPs) from infected cell lysates bind to Rab11a. We also showed that the viral polymerase directly interacts with Rab11a and that the C-terminal two-thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627, and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, which has been shown to be important for binding Rab11 family-interacting proteins (Rab11-FIPs), is also important for PB2-C binding, suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. IMPORTANCE The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane, where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study, we showed that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We mapped this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.


Asunto(s)
GTP Fosfohidrolasas , Virus de la Influenza A , ARN Viral , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Replicación Viral , GTP Fosfohidrolasas/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Nucleoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas/genética , Proteómica , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Dispersión del Ángulo Pequeño , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
2.
mBio ; : e0208624, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212413

RESUMEN

Guanylate-binding protein (GBP) 5 is an interferon-inducible cellular factor with broad anti-viral activity. Recently, GBP5 has been shown to antagonize the glycoproteins of a number of enveloped viruses, in part by disrupting the host enzyme furin. Here we show that GBP5 strongly impairs the infectivity of virus particles bearing not only viral glycoproteins that depend on furin cleavage for infectivity-the envelope (Env) glycoproteins of HIV-1 and murine leukemia virus and the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-but also viral glycoproteins that do not depend on furin cleavage: vesicular stomatitis virus glycoprotein and SARS-CoV S. We observe that GBP5 disrupts proper N-linked protein glycosylation and reduces the incorporation of viral glycoproteins into virus particles. The glycosylation of the cellular protein CD4 is also altered by GBP5 expression. Flow cytometry analysis shows that GBP5 expression reduces the cell-surface levels of HIV-1 Env and the S glycoproteins of SARS-CoV and SARS-CoV-2. Our data demonstrate that, under the experimental conditions used, inhibition of furin-mediated glycoprotein cleavage is not the primary anti-viral mechanism of action of GBP5. Rather, the antagonism appears to be related to impaired trafficking of glycoproteins to the plasma membrane. These results provide novel insights into the broad antagonism of viral glycoprotein function by the cellular host innate immune response. IMPORTANCE: The surface of enveloped viruses contains viral envelope glycoproteins, an important structural component facilitating virus attachment and entry while also acting as targets for the host adaptive immune system. In this study, we show that expression of GBP5 in virus-producer cells alters the glycosylation, cell-surface expression, and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into the broad impact of the host cell anti-viral factor GBP5 on protein glycosylation and trafficking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA