RESUMEN
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.
Asunto(s)
Azepinas/farmacología , Descubrimiento de Drogas , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Megacariocitos/metabolismo , Poliploidía , Pirimidinas/farmacología , Bibliotecas de Moléculas Pequeñas , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Aurora Quinasa A , Aurora Quinasas , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Leucemia Megacarioblástica Aguda/genética , Megacariocitos/citología , Megacariocitos/patología , Ratones , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Asociadas a rho/metabolismoRESUMEN
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Asunto(s)
Leucemia Mieloide Aguda , Ubiquitina-Proteína Ligasas , Humanos , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , MutaciónRESUMEN
The fetal liver is a major hematopoietic site containing progenitor cells that give rise to nearly all blood cells, including B-1 cells. Because the fetal liver is not a de novo site of hematopoietic stem cell (HSC) or progenitor-cell emergence, it must be seeded by yolk sac (YS)-derived erythromyeloid progenitors at embryonic day (E) 8.5-E10 and aorta-gonado-mesonephros (AGM)-derived HSCs at E10.5-E11.5. Although the B-1 progenitor cell pool in the fetal liver is considered to be of HSC origin, we have previously proposed that YS-derived B-1 progenitors may also contribute to this pool. Until now, it has been impossible to determine whether HSC-independent B-1 progenitor cells exist in the fetal liver. Here, we demonstrate the presence of transplantable fetal-liver B-1 and marginal zone B progenitor cells in genetically engineered HSC-deficient embryos. HSC-deficient YS and AGM tissues produce B-1 progenitors in vitro and thus may serve as sites of origin for the B-1 progenitors that seed the fetal liver. Furthermore, we have found that core-binding factor beta (Cbfß) expression is required for fetal-liver B-1 progenitor cell maturation and expansion. Our data provide, to our knowledge, the first evidence for the presence of B-1 progenitor cells in the fetal liver that arise independently of HSCs and implicate Cbfß as a critical molecule in the development of this lineage.
Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/citología , Hígado/embriología , Animales , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Reacción en Cadena de la PolimerasaRESUMEN
While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies.
Asunto(s)
Células Eritroides/citología , Células Eritroides/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ribosomas/metabolismo , Animales , Diferenciación Celular/fisiología , Eritropoyesis/fisiología , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genéticaRESUMEN
Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC.
Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Colágeno/química , Trasplante de Células Madre de Sangre del Cordón Umbilical , Sangre Fetal/citología , Neovascularización Fisiológica/fisiología , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre/citologíaRESUMEN
Angiopoietin-like 2 (ANGPTL2) has been reported to induce sprouting angiogenesis; however, its role in vasculogenesis, the de novo lumenization of endothelial cells (EC), remains unexplored. We sought to investigate the potential role of ANGPTL2 in regulating human cord blood derived endothelial colony forming cell (ECFC) vasculogenesis through siRNA mediated inhibition of ANGPTL2 gene expression. We found that ECFCs in which ANGPTL2 was diminished displayed a threefold decrease in in vitro lumenal area whereas addition of exogenous ANGPTL2 protein domains to ECFCs lead to increased lumen formation within a 3 dimensional (3D) collagen assay of vasculogenesis. ECFC migration was attenuated by 36 % via ANGPTL2 knockdown (KD) although proliferation and apoptosis were not affected. We subsequently found that c-Jun NH2-terminal kinase (JNK), but not ERK1/2, phosphorylation was decreased upon ANGPTL2 KD, and expression of membrane type 1 matrix metalloproteinase (MT1-MMP), known to be regulated by JNK and a critical regulator of EC migration and 3D lumen formation, was decreased in lumenized structures in vitro derived from ANGPTL2 silenced ECFCs. Treatment of ECFCs in 3D collagen matrices with either a JNK inhibitor or exogenous rhTIMP-3 (an inhibitor of MT1-MMP activity) resulted in a similar phenotype of decreased vascular lumen formation as observed with ANGPTL2 KD, whereas stimulation of JNK activity increased vasculogenesis. Based on gene silencing, pharmacologic, cellular, and biochemical approaches, we conclude that ANGPTL2 positively regulates ECFC vascular lumen formation likely through its effects on migration and in part by activating JNK and increasing MT1-MMP expression.
Asunto(s)
Angiopoyetinas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Angiopoyetinas/farmacología , Ensayos de Migración Celular , Movimiento Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Erythropoiesis is a dynamic, multistep process whereby hematopoietic stem cells differentiate toward a progressively committed erythroid lineage through intermediate progenitors. Although several downstream signaling molecules have been identified that regulate steady-state erythropoiesis, the major regulators under conditions of stress remain poorly defined. Rho kinases (ROCKs) belong to a family of serine/threonine kinases. Using gene-targeted ROCK1-deficient mice, we show that lack of ROCK1 in phenylhydrazine-induced oxidative stress model results in enhanced recovery from hemolytic anemia as well as enhanced splenic stress erythropoiesis compared with control mice. Deficiency of ROCK1 also results in enhanced survival, whereas wild-type mice die rapidly in response to stress. Enhanced survivability of ROCK1-deficient mice is associated with reduced level of reactive oxygen species. BM transplantation studies revealed that enhanced stress erythropoiesis in ROCK1-deficient mice is stem cell autonomous. We show that ROCK1 binds to p53 and regulates its stability and expression. In the absence of ROCK1, p53 phosphorylation and expression is significantly reduced. Our findings reveal that ROCK1 functions as a physiologic regulator of p53 under conditions of erythroid stress. These findings are expected to offer new perspectives on stress erythropoiesis and may provide a potential therapeutic target in human disease characterized by anemia.
Asunto(s)
Anemia Hemolítica/mortalidad , Anemia Hemolítica/prevención & control , Apoptosis , Eritropoyesis/fisiología , Estrés Oxidativo/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Quinasas Asociadas a rho/fisiología , Anemia Hemolítica/inducido químicamente , Animales , Antimetabolitos Antineoplásicos/toxicidad , Western Blotting , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/patología , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Eritropoyesis/efectos de los fármacos , Eritropoyetina/sangre , Femenino , Citometría de Flujo , Fluorouracilo/toxicidad , Inmunoprecipitación , Masculino , Ratones , Ratones Noqueados , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenilhidrazinas/toxicidad , Fosforilación , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Sox17 is essential for both endoderm development and fetal hematopoietic stem cell (HSC) maintenance. While endoderm-derived organs are well known to originate from Sox17-expressing cells, it is less certain whether fetal HSCs also originate from Sox17-expressing cells. By generating a Sox17(GFPCre) allele and using it to assess the fate of Sox17-expressing cells during embryogenesis, we confirmed that both endodermal and a part of definitive hematopoietic cells are derived from Sox17-positive cells. Prior to E9.5, the expression of Sox17 is restricted to the endoderm lineage. However, at E9.5 Sox17 is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA-Seq to determine the gene expression profiles of the two cell populations. Interestingly, this analysis revealed differences in the RNA processing of the Sox17 mRNA during embryogenesis. Taken together, these results indicate that Sox17 is expressed in progenitor cells derived from two different germ layers, further demonstrating the complex expression pattern of this gene and suggesting caution when using Sox17 as a lineage-specific marker.
Asunto(s)
Células Madre Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción SOXF/genética , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos , Desarrollo Embrionario , Endodermo/citología , Endodermo/metabolismo , Células Madre Fetales/citología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas HMGB/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , Factores de Transcripción SOXF/metabolismoRESUMEN
Rho kinases belong to a family of serine/threonine kinases whose role in recruitment and migration of inflammatory cells is poorly understood. We show that deficiency of ROCK1 results in increased recruitment and migration of macrophages and neutrophils in vitro and in vivo. Enhanced migration resulting from ROCK1 deficiency is observed despite normal expression of ROCK2 and a significant reduction in overall ROCK activity. ROCK1 directly binds PTEN in response to receptor activation and is essential for PTEN phosphorylation and stability. In the absence of ROCK1, PTEN phosphorylation, stability, and its activity are significantly impaired. Consequently, increased activation of downstream targets of PTEN, including PIP3, AKT, GSK-3beta, and cyclin D1, is observed. Our results reveal ROCK1 as a physiologic regulator of PTEN whose function is to repress excessive recruitment of macrophages and neutrophils during acute inflammation.
Asunto(s)
Macrófagos/fisiología , Neutrófilos/fisiología , Fosfohidrolasa PTEN/metabolismo , Quinasas Asociadas a rho/fisiología , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Técnicas In Vitro , Inflamación/patología , Inflamación/fisiopatología , Ratones , Ratones Noqueados , Modelos Biológicos , Fosfohidrolasa PTEN/química , Peritonitis/patología , Peritonitis/fisiopatología , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cicatrización de Heridas/fisiología , Quinasas Asociadas a rho/deficiencia , Quinasas Asociadas a rho/genéticaRESUMEN
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that has been extensively studied in fibroblasts; however its function in hematopoiesis remains an enigma. FAK is thought to be expressed in myeloid and erythroid progenitors, and its expression is enhanced in response to cytokines such as granu-locyte macrophage colony-stimulating factor. Furthermore, bone marrow cells cultured in granulocyte macrophage colony-stimulating factor show active migration and chemoattractant-induced polarization, which correlates with FAK induction. While loss of FAK in mice results in embryonic lethality, we have deleted FAK in the adult bone marrow. We show an essential role for FAK in regulating hemolytic, myelotoxic, as well as acute inflammatory stress responses in vivo. In vitro, loss of FAK in erythroid and myeloid progenitor's results in impaired cytokine induced growth and survival, as well as defects in the activation and expression of antiapoptotic proteins caspase 3 and Bcl-x(L). Additionally, reduced migration and adhesion of myeloid cells on extracellular matrix proteins, as well as impaired activation of Rac GTPase is also observed in the absence of FAK. Our studies reveal an essential role for FAK in integrating growth/survival and adhesion based functions in myeloid and erythroid cells predominantly under conditions of stress.
Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Hematopoyesis , Estrés Fisiológico , Actinas/metabolismo , Enfermedad Aguda , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/farmacología , Modelos Animales de Enfermedad , Eritropoyesis/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/deficiencia , Eliminación de Gen , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/enzimología , Células Mieloides/patología , Mielopoyesis/efectos de los fármacos , Peritonitis/inmunología , Peritonitis/patología , Fenilhidrazinas/farmacología , Estrés Fisiológico/efectos de los fármacosRESUMEN
The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to â¼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.
Asunto(s)
Síndrome de Radiación Aguda , Animales , Modelos Animales de Enfermedad , Femenino , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Tolerancia a RadiaciónRESUMEN
Polycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs). Bmi1 is associated with several genes of the Wnt signaling pathway in hematopoietic cells. Further, we found that Bmi1 represses Wnt gene expression in HSPCs. Importantly, loss of ß-catenin, which reduces Wnt activation, partially rescues the HSC self-renewal and differentiation defects seen in the Bmi1 null mice. Thus, we have identified Bmi1 as a novel regulator of Wnt signaling pathway in HSPCs. Given that Wnt signaling pathway plays an important role in hematopoiesis, our studies suggest that modulating Wnt signaling may hold potential for enhancing HSC self-renewal, thereby improving the outcomes of HSC transplantation.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Vía de Señalización Wnt , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Vía de Señalización Wnt/genéticaRESUMEN
Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.
Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Filgrastim/farmacología , Sistema Hematopoyético/efectos de los fármacos , Polietilenglicoles/farmacología , Tolerancia a Radiación/efectos de los fármacos , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/fisiopatología , Animales , Modelos Animales de Enfermedad , Sistema Hematopoyético/fisiopatología , Sistema Hematopoyético/efectos de la radiación , Humanos , Ratones , Pediatría , Tolerancia a Radiación/efectos de la radiación , Irradiación Corporal Total/efectos adversosRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Accurate analyses of the delayed effects of acute radiation exposure in survivors of the hematopoietic acute radiation syndrome are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar hematopoietic acute radiation syndrome studies conducted over a 7-y period in the authors' laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic delayed effects of acute radiation exposure at various times up to 30 mo of age. Significant loss of long-term repopulating potential of phenotypically defined primitive hematopoietic stem cells was documented in hematopoietic acute radiation syndrome survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity, and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSL CD150+; the phenotype known to be enriched for hematopoietic stem cells), and increased cycling of KSL CD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of hematopoietic stem cells in hematopoietic acute radiation syndrome survivors to be the same as that in nonirradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in hematopoietic acute radiation syndrome survivors that arises at the level of the hematopoietic stem cell and which affects all classes of hematopoietic cells for the life of the survivor.
Asunto(s)
Síndrome de Radiación Aguda/mortalidad , Médula Ósea/efectos de la radiación , Hematopoyesis/efectos de la radiación , Traumatismos Experimentales por Radiación/mortalidad , Síndrome de Radiación Aguda/patología , Animales , Médula Ósea/patología , Ciclo Celular/efectos de la radiación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/patologíaRESUMEN
Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.
Asunto(s)
Epigénesis Genética , Enfermedades Hematológicas/metabolismo , Hematopoyesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/fisiopatología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Mutación , Unión ProteicaRESUMEN
OBJECTIVE: The intracellular signals that contribute to granulocyte colony-stimulating factor (G-CSF) receptor induced stem cell mobilization are poorly characterized. METHODS: We show enhanced G-CSF induced mobilization of stem cells in mice deficient in expression of Src family kinases (SFK-/-), which is associated with hypersensitivity of SFK-/- bone marrow cells to G-CSF as well as sustained activation of signal transducer and activator of transcription-3. RESULTS: A proteome map of the bone marrow fluid derived from wild-type and SFK-/- mice revealed a significant global reduction in the number of proteins in SFK-/- mice compared to controls, which was associated with elevated matrix metalloproteinase-9 levels, reduced stromal-derived factor-1 expression, and enhanced breakdown of vascular cell adhesion molecule-1. Transplantation of wild-type or SFK-/- stem cells into wild-type mice and treatment with G-CSF recapitulated the G-CSF-induced increase in stem cell mobilization noted in SFK-/- nontransplanted mice; however, the increase was significantly less. G-CSF treatment of SFK-/- mice engrafted with wild-type stem cells also demonstrated a modest increase in stem cell mobilization compared to controls, however, the observed increase was greatest in mice completely devoid of SFKs. CONCLUSIONS: These data suggest an involvement of both hematopoietic intrinsic and microenvironmental factors in Src kinase-mediated mobilization of stem cells and identify Src kinases as potential targets for modulating stem cell mobilization.
Asunto(s)
Movilización de Célula Madre Hematopoyética , Familia-src Quinasas/fisiología , Animales , Movimiento Celular , Quimiocina CXCL12 , Quimiocinas CXC/fisiología , Factor Estimulante de Colonias de Granulocitos/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores CXCR5 , Receptores de Quimiocina/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
Manipulations of lethally-irradiated animals, such as for administration of pharmaceuticals, blood sampling, or other laboratory procedures, have the potential to induce stress effects that may negatively affect morbidity and mortality. To investigate this in a murine model of the hematopoietic acute radiation syndrome, 20 individual survival efficacy studies were grouped based on the severity of the administration (Admn) schedules of their medical countermeasure (MCM) into Admn 1 (no injections), Admn 2 (1-3 injections), or Admn 3 (29 injections or 6-9 oral gavages). Radiation doses ranged from LD30/30 to LD95/30. Thirty-day survival of vehicle controls in each group was used to construct radiation dose lethality response relationship (DRR) probit plots, which were compared statistically to the original DRR from which all LDXX/30 for the studies were obtained. The slope of the Admn 3 probit was found to be significantly steeper (5.190) than that of the original DRR (2.842) or Admn 2 (2.009), which were not significantly different. The LD50/30 for Admn 3 (8.43 Gy) was less than that of the original DRR (8.53 Gy, p < 0.050), whereas the LD50/30 of other groups were similar. Kaplan-Meier survival curves showed significantly worse survival of Admn 3 mice compared to the three other groups (p = 0.007). Taken together, these results show that stressful administration schedules of MCM can negatively impact survival and that dosing regimens should be considered when constructing DRR to use in survival studies.
Asunto(s)
Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Protectores contra Radiación/administración & dosificación , Irradiación Corporal Total/efectos adversos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Dosis de Radiación , Radiometría/métodos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from â¼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from â¼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.