Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(4): 974-981, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200289

RESUMEN

Propionic acidemia (PA) is an autosomal recessive condition (OMIM #606054), wherein pathogenic variants in PCCA and PCCB impair the activity of propionyl-CoA carboxylase. PA is associated with neurodevelopmental disorders, including intellectual disability (ID) and autism spectrum disorder (ASD); however, the correlates and mechanisms of these outcomes remain unknown. Using data from a subset of participants with PA enrolled in a dedicated natural history study (n = 33), we explored associations between neurodevelopmental phenotypes and laboratory parameters. Twenty (61%) participants received an ID diagnosis, and 12 of the 31 (39%) who were fully evaluated received the diagnosis of ASD. A diagnosis of ID, lower full-scale IQ (sample mean = 65 ± 26), and lower adaptive behavior composite scores (sample mean = 67 ± 23) were associated with several biomarkers. Higher concentrations of plasma propionylcarnitine, plasma total 2-methylcitrate, serum erythropoietin, and mitochondrial biomarkers plasma FGF21 and GDF15 were associated with a more severe ID profile. Reduced 1-13C-propionate oxidative capacity and decreased levels of plasma and urinary glutamine were also associated with a more severe ID profile. Only two parameters, increased serum erythropoietin and decreased plasma glutamine, were associated with ASD. Plasma glycine, one of the defining features of PA, was not meaningfully associated with either ID or ASD. Thus, while both ID and ASD were commonly observed in our PA cohort, only ID was robustly associated with metabolic parameters. Our results suggest that disease severity and associated mitochondrial dysfunction may play a role in CNS complications of PA and identify potential biomarkers and candidate surrogate endpoints.


Asunto(s)
Trastorno del Espectro Autista , Biomarcadores , Discapacidad Intelectual , Mitocondrias , Acidemia Propiónica , Humanos , Acidemia Propiónica/genética , Biomarcadores/sangre , Masculino , Femenino , Niño , Discapacidad Intelectual/genética , Mitocondrias/metabolismo , Preescolar , Adolescente , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/genética , Adulto , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Adulto Joven , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/sangre , Citratos
2.
J Inherit Metab Dis ; 47(1): 63-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530705

RESUMEN

Organic acidemias (OA) are a group of rare autosomal recessive disorders of intermediary metabolism that result in a systemic elevation of organic acid. Despite optimal dietary and cofactor therapy, OA patients still suffer from potentially lethal metabolic instability and experience long-term multisystemic complications. Severely affected patients can benefit from elective liver transplantation, which restores hepatic enzymatic activity, improves metabolic stability, and provides the theoretical basis for the pursuit of gene therapy as a new treatment for patients. Because of the poor outcomes reported in those with OA, especially methylmalonic and propionic acidemia, multiple gene therapy approaches have been explored in relevant animal models. Here, we review the results of gene therapy experiments performed using MMA and PA mouse models to illustrate experimental paradigms that could be applicable for all forms of OA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trasplante de Hígado , Acidemia Propiónica , Animales , Ratones , Humanos , Acidemia Propiónica/genética , Acidemia Propiónica/terapia , Acidemia Propiónica/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Trasplante de Hígado/efectos adversos , Terapia Genética , Modelos Animales de Enfermedad , Ácido Metilmalónico
3.
J Inherit Metab Dis ; 46(3): 436-449, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37078237

RESUMEN

Methylmalonic acidemia (MMA) is a severe inborn error of metabolism that is characterized by pleiotropic metabolic perturbations and multiorgan pathology. Treatment options are limited and non-curative as the underlying causative molecular mechanisms remain unknown. While earlier studies have focused on the potential direct toxicity of metabolites such as methylmalonic and propionic acid as a mechanism to explain disease pathophysiology, new observations have revealed that aberrant acylation, specifically methylmalonylation, is a characteristic feature of MMA. The mitochondrial sirtuin enzyme SIRT5 is capable of recognizing and removing this PTM, however, reduced protein levels of SIRT5 along with other mitochondrial SIRTs 3 and 4 in MMA and potentially reduced function of all three indicates aberrant acylation may require clinical intervention. Therefore, targeting posttranslational modifications may represent a new therapeutic approach to treat MMA and related organic acidemias.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Acidemia Propiónica , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Mitocondrias/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Ácido Metilmalónico
4.
J Inherit Metab Dis ; 46(4): 554-572, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243446

RESUMEN

Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Humanos , Mutación , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Biomarcadores , Progresión de la Enfermedad , Ácido Metilmalónico , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo
5.
Brain ; 145(7): 2602-2616, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35104841

RESUMEN

Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo , Malformaciones del Sistema Nervioso , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encéfalo , Humanos , Errores Innatos del Metabolismo/genética
6.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32186706

RESUMEN

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Asunto(s)
Proteínas Portadoras/genética , Morfogénesis/genética , Deficiencia de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Pez Cebra/genética , Animales , Homocistinuria/genética , Homocistinuria/patología , Humanos , Ratones , Mutación/genética , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Oxidorreductasas/genética , Retina/crecimiento & desarrollo , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/patología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
7.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35868241

RESUMEN

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Metilmalonil-CoA Mutasa , Ratones , Animales , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Edición Génica , Dependovirus/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Ratones Noqueados , Hígado/metabolismo , Hepatocitos/metabolismo , Albúminas/genética , Albúminas/metabolismo , Ácido Metilmalónico/metabolismo
8.
Hepatology ; 73(6): 2223-2237, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32976669

RESUMEN

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Dependovirus/genética , Edición Génica/métodos , Terapia Genética/métodos , Metilmalonil-CoA Mutasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/sangre , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/sangre , Hepatocitos , Neoplasias Hepáticas/patología , Trasplante de Hígado , Malonatos/sangre , Metilmalonil-CoA Mutasa/genética , Ratones , Ratones Endogámicos C57BL
9.
Am J Med Genet A ; 188(4): 1124-1141, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35107211

RESUMEN

The biological and clinical significance of the p.E88del variant in the transcobalamin receptor, CD320, is unknown. This allele is annotated in ClinVar as likely benign, pathogenic, and of uncertain significance. To determine functional consequence and clinical relevance of this allele, we employed cell culture and genetic association studies. Fibroblasts from 16 CD320 p.E88del homozygotes exhibited reduced binding and uptake of cobalamin. Complete ascertainment of newborns with transiently elevated C3 (propionylcarnitine) in New York State demonstrated that homozygosity for CD320 p.E88del was over-represented (7/348, p < 6 × 10-5 ). Using population data, we estimate that ~85% of the p.E88del homozygotes born in the same period did not have elevated C3, suggesting that cobalamin metabolism in the majority of these infants with this genotype is unaffected. Clinical follow-up of 4/9 homozygous individuals uncovered neuropsychological findings, mostly in speech and language development. None of these nine individuals exhibited perturbation of cobalamin metabolism beyond the newborn stage even during periods of acute illness. Newborns homozygous for this allele in the absence of other factors are at low risk of requiring clinical intervention, although more studies are required to clarify the natural history of various CD320 variants across patient populations.


Asunto(s)
Receptores de Superficie Celular , Transcobalaminas , Antígenos CD , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Receptores de Superficie Celular/genética , Transcobalaminas/genética , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo
10.
J Inherit Metab Dis ; 45(5): 872-888, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35766386

RESUMEN

Hereditary methylmalonic acidemia (MMA) caused by deficiency of the enzyme methylmalonyl-CoA mutase (MMUT) is a relatively common and severe organic acidemia. The recalcitrant nature of the condition to conventional dietary and medical management has led to the use of elective liver and combined liver-kidney transplantation in some patients. However, liver transplantation is intrinsically limited by organ availability, the risks of surgery, procedural and life-long management costs, transplant comorbidities, and a remaining underlying risk of complications related to MMA despite transplantation. Here, we review pre-clinical studies that present alternative approaches to solid organ transplantation as a treatment for MMUT MMA, including adeno-associated viral gene addition therapy, mRNA therapy, and genome editing, with and without nuclease enhancement.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Metilmalonil-CoA Mutasa , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Dependovirus/genética , Genómica , Humanos , Ácido Metilmalónico
11.
Mol Ther ; 29(2): 691-701, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33388420

RESUMEN

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.


Asunto(s)
Dependovirus/genética , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Leucodistrofia de Células Globoides/complicaciones , Leucodistrofia de Células Globoides/terapia , Animales , Trasplante de Médula Ósea/métodos , Carcinoma Hepatocelular/etiología , Terapia Combinada , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Neoplasias Hepáticas/etiología , Ratones
12.
Genet Med ; 23(8): 1534-1542, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34007002

RESUMEN

PURPOSE: To conduct a proof-of-principle study to identify subtypes of propionic acidemia (PA) and associated biomarkers. METHODS: Data from a clinically diverse PA patient population ( https://clinicaltrials.gov/ct2/show/NCT02890342 ) were used to train and test machine learning models, identify PA-relevant biomarkers, and perform validation analysis using data from liver-transplanted participants. k-Means clustering was used to test for the existence of PA subtypes. Expert knowledge was used to define PA subtypes (mild and severe). Given expert classification, supervised machine learning (support vector machine with a polynomial kernel, svmPoly) performed dimensional reduction to define relevant features of each PA subtype. RESULTS: Forty participants enrolled in the study; five underwent liver transplant. Analysis with k-means clustering indicated that several PA subtypes may exist on the biochemical continuum. The conventional PA biomarkers, plasma total 2-methylctirate and propionylcarnitine, were not statistically significantly different between nontransplanted and transplanted participants motivating us to search for other biomarkers. Unbiased dimensional reduction using svmPoly revealed that plasma transthyretin, alanine:serine ratio, GDF15, FGF21, and in vivo 1-13C-propionate oxidation, play roles in defining PA subtypes. CONCLUSION: Support vector machine prioritized biomarkers that helped classify propionic acidemia patients according to severity subtypes, with important ramifications for future clinical trials and management of PA.


Asunto(s)
Trasplante de Hígado , Acidemia Propiónica , Biomarcadores , Humanos , Laboratorios , Acidemia Propiónica/diagnóstico , Acidemia Propiónica/genética
13.
Genet Med ; 23(8): 1522-1533, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33820958

RESUMEN

PURPOSE: To develop a safe and noninvasive in vivo assay of hepatic propionate oxidative capacity. METHODS: A modified 1-13C-propionate breath test was administered to 57 methylmalonic acidemia (MMA) subjects, including 19 transplant recipients, and 16 healthy volunteers. Isotopomer enrichment (13CO2/12CO2) was measured in exhaled breath after an enteral bolus of sodium-1-13C-propionate, and normalized for CO2 production. 1-13C-propionate oxidation was then correlated with clinical, laboratory, and imaging parameters collected via a dedicated natural history protocol. RESULTS: Lower propionate oxidation was observed in patients with the severe mut0 and cblB subtypes of MMA, but was near normal in those with the cblA and mut- forms of the disorder. Liver transplant recipients demonstrated complete restoration of 1-13C-propionate oxidation to control levels. 1-13C-propionate oxidation correlated with cognitive test result, growth indices, bone mineral density, renal function, and serum biomarkers. Test repeatability was robust in controls and in MMA subjects (mean coefficient of variation 6.9% and 12.8%, respectively), despite widely variable serum methylmalonic acid concentrations in the patients. CONCLUSION: Propionate oxidative capacity, as measured with 1-13C-propionate breath testing, predicts disease severity and clinical outcomes, and could be used to assess the therapeutic effects of liver-targeted genomic therapies for MMA and related disorders of propionate metabolism. TRIAL REGISTRATION: This clinical study is registered in www.clinicaltrials.gov with the ID: NCT00078078. Study URL: http://clinicaltrials.gov/ct2/show/NCT00078078.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Propionatos , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Biomarcadores , Pruebas Respiratorias , Humanos , Hígado , Ácido Metilmalónico
14.
Hum Mol Genet ; 26(1): 52-64, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798114

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of NPC1 disease (Npc1-/-) displays a rapidly progressing form of NPC1 disease which is characterized by weight loss, ataxia, increased cholesterol storage, loss of cerebellar Purkinje neurons and early lethality. To test the potential efficacy of gene therapy for NPC1, we constructed adeno-associated virus serotype 9 (AAV9) vectors to deliver the NPC1 gene under the transcriptional control of the neuronal-specific (CamKII) or a ubiquitous (EF1a) promoter. The Npc1-/- mice that received a single dose of AAV9-CamKII-NPC1 as neonates (2.6 × 1011GC) or at weaning (1.3 × 1012GC), and the mice that received a single dose of AAV9-EF1a-NPC1 at weaning (1.2 × 1012GC), exhibited an increased life span, characterized by delayed weight loss and diminished motor decline. Cholesterol storage and Purkinje neuron loss were also reduced in the central nervous system of AAV9 treated Npc1-/- mice. Treatment with AAV9-EF1a-NPC1, as compared to AAV9-CamKII-NPC1, resulted in significantly increased survival (mean survival increased from 69 days to 166 and 97 days, respectively) and growth, and reduced hepatic-cholesterol accumulation. Our results provide the first demonstration that gene therapy may represent a therapeutic option for NPC1 patients and suggest that extraneuronal NPC1 expression can further augment the lifespan of the Npc1-/- mice after systemic AAV gene delivery.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Longevidad/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Proteínas/genética , Animales , Cerebelo/metabolismo , Cerebelo/patología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Células de Purkinje/metabolismo , Células de Purkinje/patología
15.
Genet Med ; 21(12): 2830-2835, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31249402

RESUMEN

PURPOSE: Propionic acidemia (PA) is a severe metabolic disorder characterized by multiorgan pathology, including renal disease. The prevalence of chronic kidney disease (CKD) in PA patients and factors associated with CKD in PA are not known. METHODS: Thirty-one subjects diagnosed with PA underwent laboratory and clinical evaluations through a dedicated natural history study at the National Institutes of Health (ClinicalTrials.gov identifier: NCT02890342). RESULTS: Cross-sectional analysis of the creatinine-based estimated glomerular filtration rate (eGFR) in subjects with native kidneys revealed an age-dependent decline in renal function (P < 0.002). Among adults with PA, 4/8 (50%) had eGFR <60 mL/min/1.73 m2. There was a significant discrepancy between eGFRs calculated using estimating equations based on serum creatinine compared with serum cystatin C (P < 0.0001). The tubular injury marker, plasma lipocalin-2, and plasma uric acid were strongly associated with CKD (P < 0.0001). The measured 24-hour creatinine excretion was below normal, even after adjusting for age, height, and sex. CONCLUSION: CKD is common in adults with PA and is associated with age. The poor predictive performance of standard eGFR estimating equations, likely due to reduced creatine synthesis in kidney and liver, could delay the recognition of CKD and management of ensuing complications in this population.


Asunto(s)
Acidemia Propiónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Creatinina/sangre , Estudios Transversales , Cistatina C/análisis , Cistatina C/sangre , Femenino , Tasa de Filtración Glomerular , Humanos , Riñón , Lipocalina 2/análisis , Lipocalina 2/sangre , Masculino , Persona de Mediana Edad , Prevalencia , Acidemia Propiónica/epidemiología , Ácido Úrico/análisis , Ácido Úrico/sangre
17.
Curr Opin Clin Nutr Metab Care ; 21(1): 42-48, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29035969

RESUMEN

PURPOSE OF REVIEW: The current review highlights the varied effects of medical foods high in leucine (Leu) and devoid of valine (Val) and isoleucine (Ile) in the management of methylmalonic acidemia (MMA) and propionic acidemia and cobalamin C (cblC) deficiency, aiming to advance dietary practices. RECENT FINDINGS: Leu is a key metabolic regulator with a multitude of effects on different organ systems. Recent observational studies have demonstrated that these effects can have unintended consequences in patients with MMA as a result of liberal use of medical foods. The combination of protein restriction and medical food use in MMA and propionic acidemia results in an imbalanced branched-chain amino acid (BCAA) dietary content with a high Leu-to-Val and/or Ile ratio. This leads to decreased plasma levels of Val and Ile and predicts impaired brain uptake of multiple essential amino acids. Decreased transport of methionine (Met) across the blood-brain barrier due to high circulating Leu levels is of particular concern in cblC deficiency in which endogenous Met synthesis is impaired. SUMMARY: Investigations into the optimal composition of medical foods for MMA and propionic acidemia, and potential scenarios in which Leu supplementation may be beneficial are needed. Until then, MMA/propionic acidemia medical foods should be used judiciously in the dietary management of these patients and avoided altogether in cblC deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/dietoterapia , Dieta con Restricción de Proteínas , Alimentos Especializados , Leucina/uso terapéutico , Acidemia Propiónica/dietoterapia , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Animales , Enfermedades Carenciales/sangre , Enfermedades Carenciales/etiología , Enfermedades Carenciales/prevención & control , Dieta con Restricción de Proteínas/efectos adversos , Alimentos Especializados/efectos adversos , Homocistinuria/sangre , Homocistinuria/dietoterapia , Humanos , Isoleucina/sangre , Isoleucina/deficiencia , Leucina/efectos adversos , Acidemia Propiónica/sangre , Valina/sangre , Valina/deficiencia , Deficiencia de Vitamina B 12/sangre , Deficiencia de Vitamina B 12/congénito , Deficiencia de Vitamina B 12/dietoterapia
18.
BMC Med ; 15(1): 43, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28238287

RESUMEN

Inborn errors of metabolism (IEM) include many disorders for which current treatments aim to ameliorate disease manifestations, but are not curative. Advances in the field of genome editing have recently resulted in the in vivo correction of murine models of IEM. Site-specific endonucleases, such as zinc-finger nucleases and the CRISPR/Cas9 system, in combination with delivery vectors engineered to target disease tissue, have enabled correction of mutations in disease models of hemophilia B, hereditary tyrosinemia type I, ornithine transcarbamylase deficiency, and lysosomal storage disorders. These in vivo gene correction studies, as well as an overview of genome editing and future directions for the field, are reviewed and discussed herein.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Errores Innatos del Metabolismo/genética , Humanos
19.
Am J Hum Genet ; 93(3): 506-14, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24011988

RESUMEN

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Factor C1 de la Célula Huésped/genética , Hiperhomocisteinemia/genética , Mutación/genética , Vitamina B 12/genética , Edad de Inicio , Secuencia de Aminoácidos , Sitios de Unión , Análisis Mutacional de ADN , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Células HEK293 , Factor C1 de la Célula Huésped/química , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo
20.
Genet Med ; 18(4): 386-95, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26270765

RESUMEN

PURPOSE: Medical foods for methylmalonic acidemias (MMAs) and propionic acidemias contain minimal valine, isoleucine, methionine, and threonine but have been formulated with increased leucine. We aimed to assess the effects of imbalanced branched-chain amino acid intake on metabolic and growth parameters in a cohort of patients with MMA ascertained via a natural history study. METHODS: Cross-sectional anthropometric and body-composition measurements were correlated with diet content and disease-related biomarkers in 61 patients with isolated MMA (46 mut, 9 cblA, and 6 cblB). RESULTS: Patients with MMA tolerated close to the recommended daily allowance (RDA) of complete protein (mut(0): 99.45 ± 32.05% RDA). However, 85% received medical foods, in which the protein equivalent often exceeded complete protein intake (35%). Medical food consumption resulted in low plasma valine and isoleucine concentrations, prompting paradoxical supplementation with these propiogenic amino acids. Weight- and height-for-age z-scores correlated negatively with the leucine-to-valine intake ratio (r = -0.453; P = 0.014; R(2) = 0.209 and r = -0.341; P = 0.05; R(2) = 0.123, respectively). CONCLUSION: Increased leucine intake in patients with MMA resulted in iatrogenic amino acid deficiencies and was associated with adverse growth outcomes. Medical foods for propionate oxidation disorders need to be redesigned and studied prospectively to ensure efficacy and safety.Genet Med 18 4, 386-395.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/dietoterapia , Dieta , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Aminoácidos de Cadena Ramificada , Composición Corporal , Pesos y Medidas Corporales , Niño , Preescolar , Estudios Transversales , Dieta/efectos adversos , Proteínas en la Dieta , Suplementos Dietéticos , Manejo de la Enfermedad , Femenino , Humanos , Masculino , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA