Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Phys Rev Lett ; 132(26): 263202, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996324

RESUMEN

We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.

2.
Phys Chem Chem Phys ; 26(34): 22572-22581, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39150720

RESUMEN

Recent advancements in ultrashort and intense X-ray sources have enabled the utilisation of resonant inelastic X-ray scattering (RIXS) as a probing technique for monitoring photoinduced dynamics in molecular systems. To account for dynamic phenomena like non-adiabatic transitions across the relevant electronic state manifold, a time-dependent framework is crucial. Here, we introduce a fully time-dependent approach for calculating transient RIXS spectra using wavepacket dynamics simulations, alongside an explicit treatment of the X-ray probe pulse that surpasses Kramers-Heisenberg-Dirac constraints. Our analysis of pyrazine at the nitrogen K-edge underscores the importance of considering nuclear motion effects in all electronic states involved in the transient RIXS process. As a result, we propose a numerically exact approach to computationally support and predict cutting-edge time-resolved RIXS experiments.

3.
J Phys Chem A ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377577

RESUMEN

We investigate theoretically the influence of strong light-matter coupling on the initial steps of the phototriggered singlet-fission process. In particular we focus on intramolecular singlet fission in a TIPS-pentacene dimer derivative described by a vibronic Hamiltonian including the optically active singlet excited states, doubly excited and charge transfer states, as well as the final triplet-triplet pair state. Quantum dynamics simulations of up to four dimers in the cavity indicate that the modified resonance condition imposed by the cavity strongly quenches the passage through the intermediate charge transfer and double-excitation states, thus largely reducing the triplet-triplet yield in the bare system. Subsequently, we modify the system parameters and construct a model Hamiltonian where the optically active singlet excitation lies below the final triplet-triplet state such that the yield of the bare system becomes insignificant. In this case we find that using the upper polariton as the doorway state for photoexcitation can lead to a much enhanced yield. This pathway is operative provided that the system is sufficiently rigid to prevent vibronic losses from the upper polariton to the dark-states manifold.

4.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38345112

RESUMEN

We propose an approach to represent the second-quantized electronic Hamiltonian in a compact sum-of-products (SOP) form. The approach is based on the canonical polyadic decomposition of the original Hamiltonian projected onto the sub-Fock spaces formed by groups of spin-orbitals. The algorithm for obtaining the canonical polyadic form starts from an exact sum-of-products, which is then optimally compactified using an alternating least squares procedure. We discuss the relation of this specific SOP with related forms, namely the Tucker format and the matrix product operator often used in conjunction with matrix product states. We benchmark the method on the electronic dynamics of an excited water molecule, trans-polyenes, and the charge migration in glycine upon inner-valence ionization. The quantum dynamics are performed with the multilayer multiconfiguration time-dependent Hartree method in second quantization representation. Other methods based on tree-tensor Ansätze may profit from this general approach.

5.
J Phys Chem A ; 127(7): 1598-1608, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36758162

RESUMEN

Intramolecular vibrational energy redistribution (IVR) plays a significant role in cavity-modified chemical reaction rates. As such, understanding the fundamental mechanisms by which the cavity modifies the IVR pathways is a fundamental step toward engineering the effect of the confined electromagnetic modes on the outcome of chemical processes. Here we consider an ensemble of M two-mode molecules with intramolecular anharmonic couplings interacting with an infrared cavity mode and consider their quantum dynamics and infrared spectra. Polaritonic Fermi resonances involving fundamental and overtone states of the polaritonic subsystem mediate efficient energy transfer pathways between otherwise off-resonant molecular states. These pathways are of collective nature, yet enabled by the intramolecular anharmonic couplings. Hence, through polaritonic Fermi resonances, cavity excitation can efficiently spread toward low-frequency modes while becoming delocalized over several molecules.

6.
J Chem Phys ; 157(13): 134102, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209026

RESUMEN

We introduce two different approaches to represent the second-quantized electronic Hamiltonian in a sum-of-products form. These procedures aim at mitigating the quartic scaling of the number of terms in the Hamiltonian with respect to the number of spin orbitals and thus enable applications to larger molecular systems. Here, we describe the application of these approaches within the multi-configuration time-dependent Hartree framework. This approach is applied to the calculation of eigenenergies of LiH and electronic ionization spectrum of H2O.

7.
Phys Rev Lett ; 126(18): 183002, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018762

RESUMEN

Electron relaxation is studied in endofullerene Mg@C_{60} after an initial localized photoexcitation in Mg by nonadiabatic molecular dynamics simulations. Two approaches to the electronic structure of the excited electronic states are used: (i) an independent particle approximation based on a density-functional theory description of molecular orbitals and (ii) a configuration-interaction description of the many-body effects. Both methods exhibit similar relaxation times, leading to an ultrafast decay and charge transfer from Mg to C_{60} within tens of femtoseconds. Method (i) further elicits a transient trap of the transferred electron that can delay the electron-hole recombination. Results shall motivate experiments to probe these ultrafast processes by two-photon transient absorption or photoelectron spectroscopy in gas phase, in solution, or as thin films.

8.
J Chem Phys ; 155(2): 024111, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34266254

RESUMEN

Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the system's complexity increases, and it is thus desirable to have accurate yet affordable methods for their simulation. Here, we introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA), which is well-established in the context of quantum spin lattice systems, into the arena of chemical nonadiabatic systems. In contrast to traditional continuous mapping approaches, e.g., the Meyer-Miller-Stock-Thoss and the spin mappings, GDTWA samples the electron degrees of freedom in a discrete phase space and thus forbids an unphysical unbounded growth of electronic state populations. The discrete sampling also accounts for an effective reduced but non-vanishing zero-point energy without an explicit parameter, which makes it possible to treat the identity operator and other operators on an equal footing. As numerical benchmarks on two linear vibronic coupling models and Tully's models show, GDTWA has a satisfactory accuracy in a wide parameter regime, independent of whether the dynamics is dominated by relaxation or by coherent interactions. Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.

9.
J Chem Phys ; 155(13): 134110, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624967

RESUMEN

We consider the application of the original Meyer-Miller (MM) Hamiltonian to mapping fermionic quantum dynamics to classical equations of motion. Non-interacting fermionic and bosonic systems share the same one-body density dynamics when evolving from the same initial many-body state. The MM classical mapping is exact for non-interacting bosons, and therefore, it yields the exact time-dependent one-body density for non-interacting fermions as well. Starting from this observation, the MM mapping is compared to different mappings specific for fermionic systems, namely, the spin mapping with and without including a Jordan-Wigner transformation and the Li-Miller mapping (LMM). For non-interacting systems, the inclusion of fermionic anti-symmetry through the Jordan-Wigner transform does not lead to any improvement in the performance of the mappings, and instead, it worsens the classical description. For an interacting impurity model and for models of excitonic energy transfer, the MM and LMM mappings perform similarly, and in some cases, the former outperforms the latter when compared to a full quantum description. The classical mappings are able to capture interference effects, both constructive and destructive, that originate from equivalent energy transfer pathways in the models.

10.
J Am Chem Soc ; 142(39): 16569-16578, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32869985

RESUMEN

The success of organic-inorganic perovskites in optoelectronics is dictated by the complex interplay between various underlying microscopic phenomena. The structural dynamics of organic cations and the inorganic sublattice after photoexcitation are hypothesized to have a direct effect on the material properties, thereby affecting the overall device performance. Here, we use ultrafast heterodyne-detected two-dimensional (2D) electronic spectroscopy to reveal impulsively excited vibrational modes of methylammonium (MA) lead iodide perovskite, which drive the structural distortion after photoexcitation. Vibrational analysis of the measured data allows us to monitor the time-evolved librational motion of the MA cation along with the vibrational coherences of the inorganic sublattice. Wavelet analysis of the observed vibrational coherences reveals the coherent generation of the librational motion of the MA cation within ∼300 fs complemented with the coherent evolution of the inorganic skeletal motion. To rationalize this observation, we employed the configuration interaction singles (CIS), which support our experimental observations of the coherent generation of librational motions in the MA cation and highlight the importance of the anharmonic interaction between the MA cation and the inorganic sublattice. Moreover, our advanced theoretical calculations predict the transfer of the photoinduced vibrational coherence from the MA cation to the inorganic sublattice, leading to reorganization of the lattice to form a polaronic state with a long lifetime. Our study uncovers the interplay of the organic cation and inorganic sublattice during formation of the polaron, which may lead to novel design principles for the next generation of perovskite solar cell materials.

11.
J Chem Phys ; 153(15): 154110, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33092359

RESUMEN

A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features non-adiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.

12.
J Chem Phys ; 153(22): 224308, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317290

RESUMEN

We study the generation of electronic ring currents in the presence of nonadiabatic coupling using circularly polarized light. For this, we introduce a solvable model consisting of an electron and a nucleus rotating around a common center and subject to their mutual Coulomb interaction. The simplicity of the model brings to the forefront the non-trivial properties of electronic ring currents in the presence of coupling to the nuclear coordinates and enables the characterization of various limiting situations transparently. Employing this model, we show that vibronic coupling effects play a crucial role even when a single E degenerate eigenstate of the system supports the current. The maximum current of a degenerate eigenstate depends on the strength of the nonadiabatic interactions. In the limit of large nuclear to electronic masses, in which the Born-Oppenheimer approximation becomes exact, constant ring currents and time-averaged oscillatory currents necessarily vanish.

13.
J Chem Phys ; 153(4): 044108, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752693

RESUMEN

The radiative and nonradiative relaxation dynamics of an ensemble of molecules in a microcavity are investigated with emphasis on the impact of the cavity lifetime on reactive and spectroscopic properties. Extending a previous study [I. S. Ulusoy et al., J. Phys. Chem. A 123, 8832-8844 (2019)], it is shown that the dynamics of the ensemble and of single molecules are influenced by the presence of a cavity resonance as long as the polariton splitting can be resolved spectroscopically, which critically depends on the lifetime of the system. Our simulations illustrate how the branching between nonradiative intersystem crossing and radiative decay through the cavity can be tuned by selecting specific cavity photon energies resonant at specific molecular geometries. In the case of cavity-photon energies that are not resonant at the Franck-Condon geometry of the molecules, it is demonstrated numerically and analytically that collective effects are limited to a handful of molecules in the ensemble.

14.
J Chem Phys ; 153(24): 244107, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380096

RESUMEN

Coherent excitation of a molecular ensemble coupled to a common radiation mode can lead to the collective emission of radiation known as superradiance. This collective emission only occurs if there is an entanglement between the molecules in their ground and excited state and can, therefore, serve as a macroscopic measure of coherence in the ensemble. Reported here are wave packet propagations for various pyrazine models of increasing complexity and molecular ensembles thereof. We show that ensemble coherence upon photoexcitation can prevail up to relatively long time scales although the effect can diminish quickly with increasing ensemble size. Coherence can also build up over time and even reemerge after the molecules have passed through a conical intersection. The effect of the pump pulse characteristics on the collective response of the molecular ensemble is also studied. A broadband pulse imprints a large amount of initial coherence to the system, as compared to a longer pulse with a smaller spread in the frequency domain. However, the differential effects arising from a different pulse duration and coherent bandwidth become less prominent if the emission of light from the ensemble takes place after a non-adiabatic decay process.

15.
J Phys Chem A ; 123(41): 8832-8844, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31536346

RESUMEN

The coupling of a molecular ensemble to the confined electromagnetic modes of a microcavity can strongly modify the photophysics and photochemistry of the molecules upon photoexcitation. We investigate here how collective coupling effects lead to modifications of the mechanisms and rates of photochemical processes, in particular, photodissociation and nonradiative decay in NaI and pyrazine, respectively. We show that, after direct excitation into the lower polaritonic states, the lower-energy light-matter hybrid states, the dynamics of the molecular ensemble coupled to light is very similar to the dynamics of the corresponding isolated molecules. Conversely, excitation into the upper polaritonic states results in more complex dynamics that involve as a first step the population transfer toward the manifold of intermediate dark states. These dynamics differ substantially from those of the isolated molecules and may result in measurable time delays for nonradiative decay or excited-state reaction mechanisms. Similarly, we describe how addition of a buffer of nonreactive molecules coupled to the cavity mode can be used to delay the onset of the photochemical processes of the reactive part of the ensemble, where the buffer medium is more effective in inhibiting the reactive process than only reactive molecules in the cavity.

16.
J Am Chem Soc ; 140(21): 6554-6561, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29771112

RESUMEN

We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH2S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

17.
Phys Rev Lett ; 121(25): 253001, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608830

RESUMEN

The ultrafast nonradiative relaxation of a molecular ensemble coupled to a cavity mode is considered theoretically and by real-time quantum dynamics. For equal coupling strength of single molecules to the cavity mode, the nonradiative relaxation rate from the upper to the lower polariton states is found to strongly depend on the number of coupled molecules. The coupling of both bright and dark polaritonic states among each other constitutes a special case of (pseudo-)Jahn-Teller interactions involving collective displacements the internal coordinates of the molecules in the ensemble, and the strength of the first order vibronic coupling depends exclusively on the gradient of the energy gaps between molecular electronic states. For N>2 molecules, the N-1 dark light-matter states between the two optically active polaritons feature true collective conical intersection crossings, whose location depends on the internal atomic coordinates of each molecule in the ensemble, and which contribute to the ultrafast nonradiative decay from the upper polariton.

18.
Phys Rev Lett ; 120(12): 123001, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29694080

RESUMEN

The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multiconfiguration time-dependent Hartree method. It is found that the presence of a nonadiabatic coupling close to the Franck-Condon point can preserve electronic coherence to some extent. Additionally, the possibility of steering the nuclear wave packets by imprinting a relative phase between the electronic states during the photoionization process is discussed. It is found that the steering of nuclear wave packets is possible given that a coherent electronic wave packet embodying the phase difference passes through a conical intersection. A conical intersection close to the Franck-Condon point is thus a necessary prerequisite for control, providing a clear path towards attochemistry.

19.
J Phys Chem A ; 122(23): 5211-5222, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29776312

RESUMEN

Ultrashort, high-intensity terahertz (THz) pulses, e.g., generated at free-electron laser facilities, allow for direct investigation as well as the driving of intermolecular modes in liquids like water and thus will deepen our understanding of the hydrogen bonding network. In this work, the temperature-jump (T-jump) of water induced by THz radiation is simulated for ten different THz frequencies in the range from 3 to 30 THz and five different pulse intensities in the range from 1 × 1011 to 5 × 1012 W/cm2 employing both ab initio molecular dynamics (AIMD) and force field molecular dynamics (FFMD) approaches. The most efficient T-jump can be achieved with 16 THz pulses. Three distinct T-jump mechanisms can be uncovered. For all cases, the T-jump mechanism proceeds within tens of femtoseconds (fs). For frequencies between 10 and 25 THz, most of the energy is initially transferred to the rotational degrees of freedom. Subsequently, the energy is redistributed to the translational and intramolecular vibrational degrees of freedom within a maximum of 500 fs. For the lowest frequencies considered (7 THz and below), translational and rotational degrees of freedom are heated within tens of fs as the THz pulse also couples to the intermolecular vibrations. Subsequently, the intramolecular vibrational modes are heated within a few hundred fs. At the highest frequencies considered (25 THz and above), vibrational and rotational degrees of freedom are heated within tens of fs, and energy redistribution to the translational degrees of freedom happens within several hundred fs. Both AIMD and FFMD simulations show a similar dependence of the T-jump on the frequency employed. However, the FFMD simulations overestimate the total energy transfer around the main peak and drop off too fast toward frequencies higher and lower than the main peak. These differences can be rationalized by missing elements, such as the polarizability, in the TIP4P/2005f force field employed. The feasibility of performing experiments at the studied frequencies and intensities as well as important issues such as energy efficiency, penetration depth, and focusing are discussed.

20.
J Phys Chem A ; 122(4): 1004-1010, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29298485

RESUMEN

The challenges of simulating extreme ultraviolet (XUV)-induced dissociation dynamics of organic molecules on a multitude of coupled potential energy surfaces are discussed for the prototypical photoionization of benzene. The prospects of Koopmans' theorem-based electronic structure calculations in combination with classical trajectories and Tully's fewest switches surface hopping are explored. It is found that a Koopmans' theorem-based approach overestimates the CH dissociation barrier and thus underestimates the fragmentation yield. However, the nonadiabatic population dynamics are in good agreement with previous approaches, indicating that the Koopmans' theorem based potentials are well described around the Franck-Condon point. This is explicitly tested for the ground state potential of the benzene cation employing CASPT2 calculations, for which very good agreement is found. This work highlights the need for efficient electronic structure approaches that can treat medium-sized organic molecules with a multitude of coupled excited states and several dissociation channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA