RESUMEN
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Asunto(s)
Remodelación Ósea/fisiología , Matriz Extracelular/fisiología , Metaloproteinasas de la Matriz/fisiología , Enfermedades Óseas/metabolismo , Enfermedades Óseas/fisiopatología , Progresión de la Enfermedad , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Neoplasias/metabolismo , Neoplasias/fisiopatología , Osteoblastos/fisiología , Inhibidores Tisulares de Metaloproteinasas/fisiología , Calcificación Vascular/metabolismo , Calcificación Vascular/fisiopatologíaRESUMEN
INTRODUCTION: Saliva contains numerous proteins and peptides, each of them carries a number of biological functions that are very important in maintaining the oral cavity health and also yields information about both local and systemic diseases. Currently, proteomic analysis is the basis for large-scale identification of these proteins and discovery of new biomarkers for distinct diseases. OBJECTIVE: This study compared methodologies to extract salivary proteins for proteomic analysis. MATERIAL AND METHODS: Saliva samples were collected from 10 healthy volunteers. In the first test, the necessity for using an albumin and IgG depletion column was evaluated, employing pooled samples from the 10 volunteers. In the second test, the analysis of the pooled samples was compared with individual analysis of one sample. Salivary proteins were extracted and processed for analysis by LC-ESI-MS/MS. RESULTS: In the first test, we identified only 35 proteins using the albumin and IgG depletion column, while we identified 248 proteins without using the column. In the second test, the pooled sample identified 212 proteins, such as carbonic anhydrase 6, cystatin isoforms, histatins 1 and 3, lysozyme C, mucin 7, protein S100A8 and S100A9, and statherin, while individual analysis identified 239 proteins, among which are carbonic anhydrase 6, cystatin isoforms, histatin 1 and 3, lactotransferrin, lyzozyme C, mucin 7, protein S100A8 and S100A9, serotransferrin, and statherin. CONCLUSIONS: The standardization of protocol for salivary proteomic analysis was satisfactory, since the identification detected typical salivary proteins, among others. The results indicate that using the column for depletion of albumin and IgG is not necessary and that performing individual analysis of saliva samples is possible.
Asunto(s)
Proteómica/métodos , Proteómica/normas , Saliva/química , Proteínas y Péptidos Salivales/análisis , Albúminas/análisis , Cromatografía Liquida/métodos , Humanos , Inmunoglobulina G/análisis , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodosRESUMEN
OBJECTIVES: The acquired enamel pellicle (AEP) is an organic film, bacteria-free, formed in vivo as a result of the selective adsorption of salivary proteins and glycoproteins to the solid surfaces exposed to the oral environment. Objective: This study aimed to compare the proteomic profile of AEP formed in situ on human and bovine enamel using a new intraoral device (Bauru in situ pellicle model - BISPM). MATERIAL AND METHODS: Material and Methods: One hundred and eight samples of human and bovine enamel were prepared (4×4 mm). Nine subjects with good oral conditions wore a removable jaw appliance (BISPM) with 6 slabs of each substrate randomly allocated. The AEP was formed during the morning, for 120 minutes, and collected with an electrode filter paper soaked in 3% citric acid. This procedure was conducted in triplicate and the pellicle collected was processed for analysis by LC-ESI-MS/MS. The obtained mass spectrometry MS/MS spectra were searched against human protein database (SWISS-PROT). RESULTS: Results: The use of BISPM allowed the collection of enough proteins amount for proper analysis. A total of 51 proteins were found in the AEP collected from the substrates. Among them, 15 were common to both groups, 14 were exclusive of the bovine enamel, and 22 were exclusive of the human enamel. Proteins typically found in the AEP were identified, such as Histatin-1, Ig alpha-1, Ig alpha 2, Lysozyme C, Statherin and Submaxillary gland androgen-regulated protein 3B. Proteins not previously described in the AEP, such as metabolism, cell signaling, cell adhesion, cell division, transport, protein synthesis and degradation were also identified. CONCLUSIONS: Conclusion: These results demonstrate that the proteins typically found in the AEP appeared in both groups, regardless the substrate. The BISPM revealed to be a good device to be used in studies involving proteomic analysis of the AEP.
Asunto(s)
Película Dental/química , Proteínas/análisis , Animales , Bovinos , Humanos , Espectrometría de Masas , Péptidos/análisis , Proteómica , Valores de Referencia , Saliva/química , Factores de TiempoRESUMEN
OBJECTIVE: This study evaluated the variation in the protein profile of the acquired enamel pellicle (AEP) formed in vivo according to its location in the dental arches. DESIGN: The AEP was formed for 120min in 9 volunteers. Pellicle formed at upper+lower anterior facial (ULAFa; teeth 13-23 and 33-43), upper anterior palatal (UAPa; teeth 13-23), lower anterior lingual (LALi; teeth 33-43), upper+lower posterior facial (ULPFa; teeth 14-17 24-27, 34-37 and 44-47), upper posterior palatal (UPPa; teeth 14-17 and 24-27) and lower posterior lingual (LPLi; teeth 34-37 and 44-47) regions were collected separately and processed for analysis by label-free LC-ESI-MS/MS. RESULTS: Three-hundred sixty three proteins were identified in total, twenty-five being common to all the locations, such as Protein S100-A8, Lysozyme C, Lactoferrin, Statherin, Ig alpha-2, ALB protein, Myeloperoxidase and SMR3B. Many proteins were found exclusively in the AEP collected from one of the regions (46-UAPa, 33-LALi, 59-ULAFa, 31-ULPFa, 44-LPLi and 39-UPPa). CONCLUSIONS: The protein composition of the AEP varied according to its location in the dental arches. These results provide important insights for understanding the differential protective roles of the AEP as a function of its location in the dental arches.
Asunto(s)
Arco Dental/metabolismo , Película Dental/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Saliva/química , Proteínas de Unión al Calcio/metabolismo , Cistatinas , Femenino , Humanos , Lactoferrina/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Muramidasa/metabolismo , Peroxidasa , Proteínas S100/metabolismo , Saliva/metabolismo , Proteínas y Péptidos Salivales , Albúmina Sérica Humana/metabolismo , Espectrometría de Masas en Tándem/métodos , Voluntarios , CalponinasRESUMEN
Abstract Saliva contains numerous proteins and peptides, each of them carries a number of biological functions that are very important in maintaining the oral cavity health and also yields information about both local and systemic diseases. Currently, proteomic analysis is the basis for large-scale identification of these proteins and discovery of new biomarkers for distinct diseases. Objective This study compared methodologies to extract salivary proteins for proteomic analysis. Material and Methods Saliva samples were collected from 10 healthy volunteers. In the first test, the necessity for using an albumin and IgG depletion column was evaluated, employing pooled samples from the 10 volunteers. In the second test, the analysis of the pooled samples was compared with individual analysis of one sample. Salivary proteins were extracted and processed for analysis by LC-ESI-MS/MS. Results In the first test, we identified only 35 proteins using the albumin and IgG depletion column, while we identified 248 proteins without using the column. In the second test, the pooled sample identified 212 proteins, such as carbonic anhydrase 6, cystatin isoforms, histatins 1 and 3, lysozyme C, mucin 7, protein S100A8 and S100A9, and statherin, while individual analysis identified 239 proteins, among which are carbonic anhydrase 6, cystatin isoforms, histatin 1 and 3, lactotransferrin, lyzozyme C, mucin 7, protein S100A8 and S100A9, serotransferrin, and statherin. Conclusions The standardization of protocol for salivary proteomic analysis was satisfactory, since the identification detected typical salivary proteins, among others. The results indicate that using the column for depletion of albumin and IgG is not necessary and that performing individual analysis of saliva samples is possible.