Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Neuropathol ; 145(6): 773-791, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37058170

RESUMEN

Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuropéptidos , Masculino , Ratones , Animales , Superóxido Dismutasa-1 , Neuropéptidos/metabolismo , Orexinas , Ingestión de Alimentos , Pérdida de Peso
2.
Ann Neurol ; 82(3): 444-456, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28856708

RESUMEN

OBJECTIVE: Spasticity occurs in a wide range of neurological diseases, including neurodegenerative diseases, after trauma, and after stroke, and is characterized by increased reflexes leading to muscle hypertonia. Spasticity is a painful symptom and can severely restrict everyday life, but might also participate in maintaining a low level of motor function in severely impaired patients. Constitutive activity of the serotonin receptors 5-HT2B/C is required for the development of spasticity after spinal cord injury and during amyotrophic lateral sclerosis (ALS). We sought here to provide direct evidence for a role of brainstem serotonin neurons in spasticity. METHODS: SOD1(G37R) mice expressing a conditional allele of an ALS-linked SOD1 mutation were crossed with Tph2-Cre mice expressing Cre in serotonergic neurons. Measurement of long-lasting reflex using electromyography, behavioral follow-up, and histological techniques was used to characterize spasticity and motor phenotype. RESULTS: Deleting mutant SOD1 expression selectively in brainstem serotonin neurons was sufficient to rescue loss of TPH2 immunoreactivity and largely preserve serotonin innervation of motor neurons in the spinal cord. Furthermore, this abrogated constitutive activity of 5-HT2B/C receptors and abolished spasticity in end-stage mice. Consistent with spasticity mitigating motor symptoms, selective deletion worsened motor function and accelerated the onset of paralysis. INTERPRETATION: Degeneration of serotonin neurons is necessary to trigger spasticity through the 5-HT2B/C receptor. The wide range of drugs targeting the serotonergic system could be useful to treat spasticity in neurological diseases. Ann Neurol 2017;82:444-456.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Espasticidad Muscular/patología , Degeneración Nerviosa/patología , Neuronas Serotoninérgicas/patología , Alelos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Espasticidad Muscular/fisiopatología , Mutación , Degeneración Nerviosa/fisiopatología , Superóxido Dismutasa-1/genética
3.
J Neurol Neurosurg Psychiatry ; 88(12): 1033-1041, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28596251

RESUMEN

OBJECTIVE: Our objective was to study the hypothalamic volume in a cohort of patients with amyotrophic lateral sclerosis (ALS) including symptomatic and presymptomatic ALS mutation carriers. METHODS: High-resolution three-dimensional T1-weighted MRI datasets from 251 patients with sporadic ALS, 19 symptomatic and 32 presymptomatic ALS mutation carriers and 112 healthy controls (HC) were retrospectivally registered for manual delineation of the hypothalamus. The volume of the hypothalamus, in total or subdivided, was normalised to the intracranial volume and adjusted to age. Correlation analyses were performed with clinical and metabolic outcomes. Pathologically defined ALS stages were determined in vivo by diffusion tensor imaging (DTI). RESULTS: We observed a severe atrophy of the hypothalamus both in patients with sporadic ALS (-21.8%, p<0.0001) and symptomatic ALS mutation carriers (-13.4%, p<0.001). The atrophy in patients with sporadic ALS was observed in both the anterior (-27.6% p<0.0001) and the posterior parts of the hypothalamus (-17.7%, p<0.0001). Notably, this atrophy was also observed in presymptomatic ALS mutation carriers (-15.5%, p<0.001) and was unrelated to whole brain volume atrophy or disease stage as assessed using DTI or functional status. Hypothalamic volume was correlated with body mass index (BMI) in patients with sporadic ALS (p=0.0434, ρ=+0.1579), and this correlation was much stronger in patients with familial ALS (fALS) (p=0.0060, ρ=+0.6053). Anterior hypothalamic volume was correlated with age at onset, but not with survival after MRI. CONCLUSIONS: Hypothalamus is atrophied in ALS, even in premorbid stages, and correlates with BMI, especially in fALS. Decreased anterior hypothalamic volume is associated with earlier onset of disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Hipotálamo/patología , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Atrofia , Índice de Masa Corporal , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Cohortes , Imagen de Difusión Tensora , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Brain ; 139(Pt 4): 1106-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26984187

RESUMEN

Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic lateral sclerosis mouse models based on TDP-43 (Tardbp) and FUS mutations. Finally, we demonstrate that the melanocortin defect is primarily caused by serotonin loss in mutant SOD1(G86R) mice. Altogether, the current study combined clinical evidence and experimental studies in rodents to provide a mechanistic explanation for abnormalities in food intake and weight control observed in patients with amyotrophic lateral sclerosis. Importantly, these results also show that amyotrophic lateral sclerosis progression impairs responsiveness to classical drugs leading to weight gain. This has important implications for pharmacological management of weight loss in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Hipotálamo/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal/fisiología , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Femenino , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pioglitazona , Proopiomelanocortina/genética , Riluzol/farmacología , Riluzol/uso terapéutico , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico
5.
Acta Neuropathol ; 131(3): 465-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26744351

RESUMEN

Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema Mononuclear Fagocítico/patología , Receptor de Serotonina 5-HT2B/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/patología , Sistema Mononuclear Fagocítico/metabolismo , Neuronas Motoras/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Médula Espinal/patología
6.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34290096

RESUMEN

Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.

7.
Front Mol Neurosci ; 11: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29403354

RESUMEN

Neurodegenerative diseases (NDDs) are disorders characterized by progressive deterioration of brain structure and function. Selective neuronal populations are affected leading to symptoms which are prominently motor in amyotrophic lateral sclerosis (ALS) or Huntington's disease (HD), or cognitive in Alzheimer's disease (AD) and fronto-temporal dementia (FTD). Besides the common existence of neuronal loss, NDDs are also associated with metabolic changes such as weight gain, weight loss, loss of fat mass, as well as with altered feeding behavior. Importantly, preclinical research as well as clinical studies have demonstrated that altered energy homeostasis influences disease progression in ALS, AD and HD, suggesting that identification of the pathways leading to perturbed energy balance might provide valuable therapeutic targets Signals from both the periphery and central inputs are integrated in the hypothalamus, a major hub for the control of energy balance. Recent research identified major hypothalamic changes in multiple NDDs. Here, we review these hypothalamic alterations and seek to identify commonalities and differences in hypothalamic involvement between the different NDDs. These hypothalamic defects could be key in the development of perturbations in energy homeostasis in NDDs and further understanding of the underlying mechanisms might open up new avenues to not only treat weight loss but also to ameliorate overall neurological symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA