Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(52): e2210435119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534810

RESUMEN

The α-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable α-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of α-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering α-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized α-helix recognition sites, and restricting the starting chemical matter to those known α-helical binders. Here, we report a general and rapid screening method to empirically map the α-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated α-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct α-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets.


Asunto(s)
Amidas , Péptidos , Conformación Proteica en Hélice alfa , Sitios de Unión , Péptidos/química , Biblioteca de Péptidos
2.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32606248

RESUMEN

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
J Pept Sci ; 28(7): e3389, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34937123

RESUMEN

Aberrant activation of the Wnt signaling pathway has been identified in numerous types of cancer. One common feature of oncogenic Wnt regulation involves an increase in the cellular levels of ß-catenin due to interference with its constitutive ubiquitin-dependent degradation. Targeting ß-catenin has therefore emerged as an appealing approach for the treatment of Wnt-dependent cancers. Here, we report a strategy that employs multifunctional stapled peptides to recruit an E3 ubiquitin ligase to ß-catenin, thereby rescuing ß-catenin degradation by hijacking the endogenous ubiquitin-proteasome pathway. Specifically, we designed, synthesized, and evaluated a panel of multifunctional stapled peptides that have a ß-catenin binding moiety (StAx-35) covalently linked to a second stapled peptide moiety (SAH-p53-8), which is capable to interact with the E3 ubiquitin ligase MDM2. We found that in vitro these multifunctional peptides can recruit the MDM2 protein to ß-catenin and induce poly-ubiquitination on ß-catenin. In cellulo, treatment of the human colorectal cancer cell line SW480 with the multifunctional stapled peptides showed dose-dependent degradation of endogenous ß-catenin levels. In addition, a luciferase reporter assay showed that the multifunctional stapled peptides can suppress ß-catenin-mediated gene expression via the Wnt signaling pathway. Therefore, these multifunctional stapled peptides provide a unique research tool for examining the Wnt signaling pathway by targeted knockdown of ß-catenin at the protein level, and may serve as leads for potential drug candidates in the treatment of Wnt-dependent cancers.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Humanos , Péptidos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
J Biol Chem ; 293(9): 3265-3280, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282294

RESUMEN

The Ras proteins are aberrantly activated in a wide range of human cancers, often endowing tumors with aggressive properties and resistance to therapy. Decades of effort to develop direct Ras inhibitors for clinical use have thus far failed, largely because of a lack of adequate small-molecule-binding pockets on the Ras surface. Here, we report the discovery of Ras-binding miniproteins from a naïve library and their evolution to afford versions with midpicomolar affinity to Ras. A series of biochemical experiments indicated that these miniproteins bind to the Ras effector domain as dimers, and high-resolution crystal structures revealed that these miniprotein dimers bind Ras in an unprecedented mode in which the Ras effector domain is remodeled to expose an extended pocket that connects two isolated pockets previously found to engage small-molecule ligands. We also report a Ras point mutant that stabilizes the protein in the open conformation trapped by these miniproteins. These findings provide new tools for studying Ras structure and function and present opportunities for the development of both miniprotein and small-molecule inhibitors that directly target the Ras proteins.


Asunto(s)
Proteínas/metabolismo , Proteínas/farmacología , Proteínas ras/química , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Descubrimiento de Drogas , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos/efectos de los fármacos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas/química , Proteínas/genética
5.
J Biol Chem ; 292(12): 5007-5017, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28130451

RESUMEN

The highly mutagenic A:8-oxoguanine (oxoG) base pair is generated mainly by misreplication of the C:oxoG base pair, the oxidation product of the C:G base pair. The A:oxoG base pair is particularly insidious because neither base in it carries faithful information to direct the repair of the other. The bacterial MutY (MUTYH in humans) adenine DNA glycosylase is able to initiate the repair of A:oxoG by selectively cleaving the A base from the A:oxoG base pair. The difference between faithful repair and wreaking mutagenic havoc on the genome lies in the accurate discrimination between two structurally similar base pairs: A:oxoG and A:T. Here we present two crystal structures of the MutY N-terminal domain in complex with either undamaged DNA or DNA containing an intrahelical lesion. These structures have captured for the first time a DNA glycosylase scanning the genome for a damaged base in the very first stage of lesion recognition and the base extrusion pathway. The mode of interaction observed here has suggested a common lesion-scanning mechanism across the entire helix-hairpin-helix superfamily to which MutY belongs. In addition, small angle X-ray scattering studies together with accompanying biochemical assays have suggested a possible role played by the C-terminal oxoG-recognition domain of MutY in lesion scanning.


Asunto(s)
ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Reparación del ADN , Geobacillus stearothermophilus/enzimología , Emparejamiento Base , Cristalografía por Rayos X , Daño del ADN , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Modelos Moleculares , Conformación Proteica
6.
Appl Microbiol Biotechnol ; 102(5): 2337-2350, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29396588

RESUMEN

We used a temperature differential assay with the opportunistic fungal pathogen Cryptococcus neoformans as a simple screening platform to detect small molecules with antifungal activity in natural product extracts. By screening of a collection extracts from two different strains of the coprophilous fungus, Amphichorda felina, we detected strong, temperature-dependent antifungal activity using a two-plate agar zone of inhibition assay at 25 and 37 °C. Bioassay-guided fractionation of the crude extract followed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) identified cyclosporin C (CsC) as the main component of the crude extract responsible for growth inhibition of C. neoformans at 37 °C. The presence of CsC was confirmed by comparison with a commercial standard. We sequenced the genome of A. felina to identify and annotate the CsC biosynthetic gene cluster. The only previously characterized gene cluster for the biosynthesis of similar compounds is that of the related immunosuppressant drug cyclosporine A (CsA). The CsA and CsC gene clusters share a high degree of synteny and sequence similarity. Amino acid changes in the adenylation domain of the CsC nonribosomal peptide synthase's sixth module may be responsible for the substitution of L-threonine compared to L-α-aminobutyric acid in the CsA peptide core. This screening strategy promises to yield additional antifungal natural products with a focused spectrum of antimicrobial activity.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Ciclosporinas/farmacología , Hypocreales/química , Antifúngicos/química , Antifúngicos/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Ciclosporinas/química , Ciclosporinas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Temperatura
7.
J Am Chem Soc ; 139(22): 7632-7639, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28448128

RESUMEN

The Ras proteins are essential GTPases involved in the regulation of cell proliferation and survival. Mutated oncogenic forms of Ras alter effector binding and innate GTPase activity, leading to deregulation of downstream signal transduction. Mutated forms of Ras are involved in approximately 30% of human cancers. Despite decades of effort to develop direct Ras inhibitors, Ras has long been considered "undruggable" due to its high affinity for GTP and its lack of hydrophobic binding pockets. Herein, we report a total chemical synthesis of all-l- and all-d-amino acid biotinylated variants of oncogenic mutant KRas(G12V). The protein is synthesized using Fmoc-based solid-phase peptide synthesis and assembled using combined native chemical ligation and isonitrile-mediated activation strategies. We demonstrate that both KRas(G12V) enantiomers can successfully fold and bind nucleotide substrates and binding partners with observable enantiodiscrimination. By demonstrating the functional competency of a mirror-image form of KRas bound to its corresponding enantiomeric nucleotide triphosphate, this study sets the stage for further biochemical studies with this material. In particular, this protein will enable mirror-image yeast surface display experiments to identify all-d peptide ligands for oncogenic KRas, providing a useful tool in the search for new therapeutics against this challenging disease target.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/síntesis química , Secuencia de Aminoácidos , Variación Genética , Humanos , Pliegue de Proteína , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
J Biol Chem ; 290(28): 17096-105, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25995449

RESUMEN

The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Reparación del ADN/fisiología , Geobacillus stearothermophilus/enzimología , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , ADN Glicosilasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Geobacillus stearothermophilus/genética , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
Nature ; 462(7274): 762-6, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20010681

RESUMEN

How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein-DNA interfaces in the matched complexes differ by only two atoms-those that distinguish oxoG from G-their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Geobacillus stearothermophilus/enzimología , Guanina/análogos & derivados , Biocatálisis , Simulación por Computador , Cristalografía por Rayos X , ADN-Formamidopirimidina Glicosilasa/genética , Genoma Bacteriano/genética , Geobacillus stearothermophilus/genética , Guanina/metabolismo , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación/genética , Termodinámica
10.
Nature ; 462(7270): 182-8, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19907488

RESUMEN

Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.


Asunto(s)
Péptidos/farmacología , Receptor Notch1/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos , Animales , Unión Competitiva , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma/efectos de los fármacos , Genoma/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Modelos Moleculares , Proteínas Nucleares/química , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor Notch1/química , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(44): 17942-7, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071338

RESUMEN

Aberrant activation of signaling by the Wnt pathway is strongly implicated in the onset and progression of numerous types of cancer. Owing to the persistent dependence of these tumors on Wnt signaling for growth and survival, inhibition of this pathway is considered an attractive mechanism-based therapeutic approach. Oncogenic activation of Wnt signaling can ensue from a variety of distinct aberrations in the signaling pathway, but most share the common feature of causing increased cellular levels of ß-catenin by interfering with its constitutive degradation. ß-Catenin serves as a central hub in Wnt signaling by engaging in crucial protein-protein interactions with both negative and positive effectors of the pathway. Direct interference with these protein-protein interactions is a biologically compelling approach toward suppression of ß-catenin hyperactivity, but such interactions have proven intransigent with respect to small-molecule targeting. Hence ß-catenin remains an elusive target for translational cancer therapy. Here we report the discovery of a hydrocarbon-stapled peptide that directly targets ß-catenin and interferes with its ability to serve as a transcriptional coactivator for T-cell factor (TCF) proteins, the downstream transcriptional regulators of the Wnt pathway.


Asunto(s)
Oncogenes , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Secuencia de Aminoácidos , Células HeLa , Humanos , Datos de Secuencia Molecular , Transcripción Genética
12.
Proc Natl Acad Sci U S A ; 109(4): 1086-91, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22219368

RESUMEN

Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.


Asunto(s)
Reparación del ADN/fisiología , ADN-Formamidopirimidina Glicosilasa/metabolismo , ADN/metabolismo , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Translocación Genética/fisiología , Cristalización , ADN-Formamidopirimidina Glicosilasa/química , ADN-Formamidopirimidina Glicosilasa/genética , Escherichia coli , Geobacillus stearothermophilus/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Transporte de Proteínas/fisiología , Sincrotrones , Difracción de Rayos X
13.
J Biol Chem ; 288(14): 10012-10023, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23404556

RESUMEN

MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe(114) and Met(77) in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met(77) plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe(114), on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.


Asunto(s)
ADN-Formamidopirimidina Glicosilasa/metabolismo , ADN/química , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Catálisis , Reactivos de Enlaces Cruzados/química , ADN Glicosilasas/química , Reparación del ADN , Escherichia coli/metabolismo , Guanina/química , Cinética , Metionina/química , Modelos Biológicos , Modelos Químicos , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Mutación Puntual , Unión Proteica , Conformación Proteica
14.
J Am Chem Soc ; 136(35): 12314-22, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25105213

RESUMEN

Conformationally stabilized α-helical peptides are capable of inhibiting disease-relevant intracellular or extracellular protein-protein interactions in vivo. We have previously reported that the employment of ring-closing metathesis to introduce a single all-hydrocarbon staple along one face of an α-helical peptide greatly increases α-helical content, binding affinity to a target protein, cell penetration through active transport, and resistance to proteolytic degradation. In an effort to improve upon this technology for stabilizing a peptide in a bioactive α-helical conformation, we report the discovery of an efficient and selective bis ring-closing metathesis reaction leading to peptides bearing multiple contiguous staples connected by a central spiro ring junction. Circular dichroism spectroscopy, NMR, and computational analyses have been used to investigate the conformation of these "stitched" peptides, which are shown to exhibit remarkable thermal stabilities. Likewise, trypsin proteolysis assays confirm the achievement of a structural rigidity unmatched by peptides bearing a single staple. Furthermore, fluorescence-activated cell sorting (FACS) and confocal microscopy assays demonstrate that stitched peptides display superior cell penetrating ability compared to their stapled counterparts, suggesting that this technology may be useful not only in the context of enhancing the drug-like properties of α-helical peptides but also in producing potent agents for the intracellular delivery of proteins and oligonucleotides.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Citometría de Flujo , Células HeLa , Humanos , Células Jurkat , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/farmacocinética , Estructura Secundaria de Proteína
15.
Nat Commun ; 15(1): 1813, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418820

RESUMEN

Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins - almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.


Asunto(s)
Péptidos , Proteínas , Ligandos , Descubrimiento de Drogas
16.
Mol Ther Nucleic Acids ; 35(3): 102246, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39027419

RESUMEN

Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.

17.
J Med Chem ; 67(15): 13147-13173, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39078366

RESUMEN

Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.


Asunto(s)
Quinasas Ciclina-Dependientes , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Humanos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Animales , Genómica/métodos , Modelos Moleculares
18.
J Biol Chem ; 287(48): 40099-105, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23012373

RESUMEN

BACKGROUND: How DNA 5-cytosine methyltransferases (DCMTases) select their substrate nucleobase for extrusion from DNA duplex is poorly understood. RESULTS: The crystal structure of a pre-extrusion M.HaeIII DCMTase-substrate DNA complex is reported here. CONCLUSION: M.HaeIII selects its substrate cytosine for extrusion by selectively interfering with its stacking and hydrogen bonding interactions within the DNA duplex. SIGNIFICANCE: This is the first structural elucidation of the target cytosine selection by a DCMTase. Epigenetic methylation of cytosine residues in DNA is an essential element of genome maintenance and function in organisms ranging from bacteria to humans. DNA 5-cytosine methyltransferase enzymes (DCMTases) catalyze cytosine methylation via reaction intermediates in which the DNA is drastically remodeled, with the target cytosine residue extruded from the DNA helix and plunged into the active site pocket of the enzyme. We have determined a crystal structure of M.HaeIII DCMTase in complex with its DNA substrate at a previously unobserved state, prior to extrusion of the target cytosine and frameshifting of the DNA recognition sequence. The structure reveals that M.HaeIII selects the target cytosine and destabilizes its base-pairing through a precise, focused, and coordinated assault on the duplex DNA, which isolates the target cytosine from its nearest neighbors and thereby facilitates its extrusion from DNA.


Asunto(s)
Proteínas Bacterianas/química , Citosina/metabolismo , ADN-Citosina Metilasas/química , ADN/genética , Haemophilus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Citosina/química , ADN/metabolismo , Metilación de ADN , ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Haemophilus/química , Haemophilus/genética , Modelos Moleculares , Especificidad por Sustrato
19.
J Biol Chem ; 287(22): 18044-54, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22465958

RESUMEN

MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ("extrudogenic") backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.


Asunto(s)
ADN Bacteriano/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , ADN Bacteriano/química , ADN-Formamidopirimidina Glicosilasa/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
J Biol Chem ; 287(22): 18843-53, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22451672

RESUMEN

Most cellular RNAs engage in intrastrand base-pairing that gives rise to complex three-dimensional folds. This self-pairing presents an impediment toward binding of the RNA by nucleic acid-based ligands. An important step in the discovery of RNA-targeting ligands is therefore to identify those regions in a folded RNA that are accessible toward the nucleic acid-based ligand. Because the folding of RNA targets can involve interactions between nonadjacent regions and employ both Watson-Crick and non-Watson-Crick base-pairing, screening of candidate binder ensembles is typically necessary. Microarray-based screening approaches have shown great promise in this regard and have suggested that achieving complete sequence coverage would be a valuable attribute of a next generation system. Here, we report a custom microarray displaying a library of RNA-interacting polynucleotides comprising all possible 2'-OMe RNA sequences from 4- to 8-nucleotides in length. We demonstrate the utility of this array in identifying RNA-interacting polynucleotides that bind tightly and specifically to the highly conserved, functionally essential template/pseudoknot domain of human telomerase RNA and that inhibit telomerase function in vitro.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/química , ARN/genética , Telomerasa/metabolismo , Humanos , Conformación de Ácido Nucleico , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA