Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Dev Biol ; 473: 33-49, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33515576

RESUMEN

Proliferation and differentiation of vocal fold epithelial cells during embryonic development is poorly understood. We examined the role of Hippo signaling, a vital pathway known for regulating organ size, in murine laryngeal development. Conditional inactivation of the Hippo kinase genes Lats1 and Lats2, specifically in vocal fold epithelial cells, resulted in severe morphogenetic defects. Deletion of Lats1 and Lats2 caused abnormalities in epithelial differentiation, epithelial lamina separation, cellular adhesion, basement membrane organization with secondary failed cartilage, and laryngeal muscle development. Further, Lats1 and Lats2 inactivation led to failure in differentiation of p63+ basal progenitors. Our results reveal novel roles of Hippo-Lats-YAP signaling in proper regulation of VF epithelial fate and larynx morphogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Laringe/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Epitelio/fisiología , Femenino , Vía de Señalización Hippo , Laringe/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/fisiología , Pliegues Vocales/metabolismo , Pliegues Vocales/fisiología , Proteínas Señalizadoras YAP
2.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L50-L63, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755535

RESUMEN

Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.


Asunto(s)
Pulmón/inervación , Células Receptoras Sensoriales/fisiología , Células Epiteliales Alveolares/metabolismo , Animales , Tronco Encefálico/fisiología , Calbindinas/metabolismo , Perfilación de la Expresión Génica , Integrasas/metabolismo , Pulmón/irrigación sanguínea , Ratones , Modelos Biológicos , Músculo Liso/fisiología , Células Neuroendocrinas/metabolismo , Ganglio Nudoso/fisiología , Tráquea/inervación , Nervio Vago/fisiología
3.
Development ; 146(24)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31767619

RESUMEN

The respiratory lineage initiates from the specification of NKX2-1+ progenitor cells that ultimately give rise to a vast gas-exchange surface area. How the size of the progenitor pool is determined and whether this directly impacts final lung size remains poorly understood. Here, we show that epithelium-specific inactivation of Mdm2, which encodes an E3 ubiquitin ligase, led to lethality at birth with a striking reduction of lung size to a single vestigial lobe. Intriguingly, this lobe was patterned and contained all the appropriate epithelial cell types. The reduction of size can be traced to the progenitor stage, when p53, a principal MDM2 protein degradation target, was transiently upregulated. This was followed by a brief increase of apoptosis. Inactivation of the p53 gene in the Mdm2 mutant background effectively reversed the lung size phenotype, allowing survival at birth. Together, these findings demonstrate that p53 protein turnover by MDM2 is essential for the survival of respiratory progenitors. Unlike in the liver, in which genetic reduction of progenitors triggered compensation, in the lung, respiratory progenitor number is a key determinant factor for final lung size.


Asunto(s)
Proliferación Celular/genética , Pulmón/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Mucosa Respiratoria/citología , Células Madre/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Recuento de Células , Embrión de Mamíferos , Femenino , Pulmón/citología , Pulmón/embriología , Masculino , Ratones , Ratones Transgénicos , Tamaño de los Órganos/genética , Embarazo , Proteínas Proto-Oncogénicas c-mdm2/genética , Células Madre/citología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
4.
Development ; 145(4)2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29386246

RESUMEN

Congenital laryngeal webs result from failure of vocal fold separation during development in utero Infants present with life-threatening respiratory problems at birth, and extensive lifelong difficulties in breathing and voicing. The molecular mechanisms that instruct vocal fold formation are rarely studied. Here, we show, for the first time, that conditional inactivation of the gene encoding ß-catenin in the primitive laryngopharyngeal epithelium leads to failure in separation of the vocal folds, which approximates the gross phenotype of laryngeal webbing. These defects can be traced to a series of morphogenesis defects, including delayed fusion of the epithelial lamina and formation of the laryngeal cecum, failed separation of the larynx and esophagus with reduced and disorganized cartilages and muscles. Parallel to these morphogenesis defects, inactivation of ß-catenin disrupts stratification of epithelial cells and establishment of p63+ basal progenitors. These findings provide the first line of evidence that links ß-catenin function to the cell proliferation and progenitor establishment during larynx and vocal fold development.


Asunto(s)
Anomalías Congénitas/genética , Laringe/anomalías , Laringe/metabolismo , Células Madre/metabolismo , Pliegues Vocales/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Ratones
5.
Development ; 145(21)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30305289

RESUMEN

Lung growth to its optimal size at birth is driven by reiterative airway branching followed by differentiation and expansion of alveolar cell types. How this elaborate growth is coordinated with the constraint of the chest is poorly understood. Here, we investigate the role of Hippo signaling, a cardinal pathway in organ size control, in mouse lung development. Unexpectedly, we found that epithelial loss of the Hippo kinase genes Lats1 and Lats2 (Lats1/2) leads to a striking reduction of lung size owing to an early arrest of branching morphogenesis. This growth defect is accompanied by abnormalities in epithelial cell polarity, cell division plane and extracellular matrix deposition, as well as precocious and increased expression of markers for type 1 alveolar epithelial cells (AEC1s), an indicator of terminal differentiation. Increased AEC1s were also observed in transgenic mice with overexpression of a constitutive nuclear form of downstream transcriptional effector YAP. Conversely, loss of Yap and Taz led to decreased AEC1s, demonstrating that the canonical Hippo signaling pathway is both sufficient and necessary to drive AEC1 fate. These findings together reveal unique roles of Hippo-LATS-YAP signaling in the developing mouse lung.


Asunto(s)
Aire , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Diferenciación Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Respiración , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Polaridad Celular , Proliferación Celular , Embrión de Mamíferos/citología , Vía de Señalización Hippo , Ratones , Morfogénesis , Mutación/genética , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Transactivadores , Proteínas Señalizadoras YAP
7.
Proc Natl Acad Sci U S A ; 113(27): 7557-62, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335464

RESUMEN

The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Pulmón/embriología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Femenino , Proteínas Hedgehog/metabolismo , Pulmón/enzimología , Ratones , Morfogénesis , Proteínas Nucleares/genética , Embarazo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Mucosa Respiratoria/enzimología , Ubiquitina-Proteína Ligasas/genética
8.
Dev Biol ; 429(2): 387-390, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131856

RESUMEN

More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field.


Asunto(s)
Ectodermo/embriología , Embriología , Biología Molecular , Animales , Tipificación del Cuerpo , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Inactivación de Genes
9.
Dev Biol ; 409(2): 429-41, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26632490

RESUMEN

Alveologenesis is the final step of lung maturation, which subdivides the alveolar region of the lung into smaller units called alveoli. Each of the nascent dividers serves as a new gas-exchange surface, and collectively they drastically increase the surface area for breathing. Disruption of alveologenesis results in simplification of alveoli, as is seen in premature infants diagnosed with bronchopulmonary dysplasia (BPD), a prevalent lung disease that is often associated with lifelong breathing deficiencies. To date, a majority of studies of alveologenesis rely on two-dimensional (2D) analysis of tissue sections. Given that an overarching theme of alveologenesis is thinning and extension of the epithelium and mesenchyme to facilitate gas exchange, often only a small portion of a cell or a cellular structure is represented in a single 2D plane. Here, we use a three-dimensional (3D) approach to examine the structural architecture and cellular composition of myofibroblasts, alveolar type 2 cells, elastin and lipid droplets in normal as well as BPD-like mouse lung. We found that 2D finger-like septal crests, commonly used to depict growing alveolar septae, are often artifacts of sectioning through fully established alveolar walls. Instead, a more accurate representation of growing septae are 3D ridges that are lined by platelet-derived growth factor receptor alpha (PDGFRA) and alpha smooth muscle actin (α-SMA)-expressing myofibroblasts, as well as the elastin fibers that they produce. Accordingly in 3D, both α-SMA and elastin were each found in connected networks underlying the 3D septal ridges rather than as isolated dots at the tip of 2D septal crests. Analysis through representative stages of alveologenesis revealed unappreciated dynamic changes in these patterns. PDGFRA-expressing cells are only α-SMA-positive during the first phase of alveologenesis, but not in the second phase, suggesting that the two phases of septae formation may be driven by distinct mechanisms. Thin elastin fibers are already present in the alveolar region prior to alveologenesis, suggesting that during alveologenesis, there is not only new elastin deposition, but also extensive remodeling to transform thin and uniformly distributed fibers into thick cables that rim the nascent septae. Analysis of several genetic as well as hyperoxia-induced models of BPD revealed that the myofibroblast organization is perturbed in all, regardless of whether the origin of defect is epithelial, mesenchymal, endothelial or environmental. Finally, analysis of relative position of PDGFRA-positive cells and alveolar type 2 cells reveal that during alveologenesis, these two cell types are not always adjacent to one another. This result suggests that the niche and progenitor relationship afforded by their close juxtaposition in the adult lung may be a later acquired property. These insights revealed by 3D reconstruction of the septae set the foundation for future investigations of the mechanisms driving normal alveologenesis, as well as causes of alveolar simplification in BPD.


Asunto(s)
Imagenología Tridimensional , Alveolos Pulmonares/crecimiento & desarrollo , Actinas/metabolismo , Animales , Artefactos , Elastina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Lípidos/química , Ratones , Modelos Animales , Modelos Biológicos , Miofibroblastos/citología , Miofibroblastos/metabolismo , Pericitos/metabolismo , Alveolos Pulmonares/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estrés Fisiológico
10.
Dev Dyn ; 245(4): 497-507, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26813283

RESUMEN

BACKGROUND: Fras1 encodes an extracellular matrix protein that is critical for the establishment of the epidermal basement membrane during gestation. In humans, mutations in FRAS1 cause Fraser Syndrome (FS), a pleiotropic condition with many clinical presentations such as limb, eye, kidney, and craniofacial deformations. Many of these defects are mimicked by loss of Fras1 in mice, and are preceded by the formation of epidermal blisters in utero. RESULTS: In this study, we identified a novel ENU-derived rounded foot (rdf) mouse mutant with highly penetrant hindlimb soft-tissue syndactyly, among other structural defects. Mapping and sequencing revealed that rdf is a novel loss-of-function nonsense allele of Fras1 (Fras1(rdf)). Focusing on the limb, we found that the Fras1(rdf) syndactyly phenotype originates from loss of interdigital cell death (ICD). Despite normal expression of bone morphogenetic protein (BMP) ligands and their receptors, the BMP downstream target gene Msx2, which is also necessary and sufficient to promote ICD, was down-regulated in the interdigital regions of Fras1(rdf) hindlimb buds. CONCLUSIONS: The close correlation between limb bud epidermal blistering, decreased Msx2 expression, and reduced ICD in the Fras1(rdf) hindlimb buds suggests that epithelium detachment from the mesenchyme may create a physical gap that interrupts the transmission of BMP, among other signals, resulting in soft tissue syndactyly.


Asunto(s)
Apoptosis , Proteínas de la Matriz Extracelular/metabolismo , Miembro Posterior/embriología , Mutación , Sindactilia/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de la Matriz Extracelular/genética , Miembro Posterior/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Mutantes , Sindactilia/genética , Sindactilia/patología
11.
Dev Biol ; 399(2): 263-82, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25601450

RESUMEN

This investigation provides the first systematic determination of the cellular and molecular progression of vocal fold (VF) epithelium development in a murine model. We define five principal developmental events that constitute the progression from VF initiation in the embryonic anterior foregut tube to fully differentiated and functional adult tissue. These developmental events include (1) the initiation of the larynx and vocal folds with apposition of the lateral walls of the primitive laryngopharynx (embryonic (E) day 10.5); (2) the establishment of the epithelial lamina with fusion of the lateral walls of the primitive laryngopharynx (E11.5); (3) the epithelial lamina recanalization and separation of VFs (E13.5-18.5); (4) the stratification of the vocal folds (E13.5-18.5); and (5) the maturation of vocal fold epithelium (postnatal stages). The illustration of these morphogenetic events is substantiated by dynamic changes in cell proliferation and apoptosis, as well as the expression pattern of key transcription factors, FOXA2, SOX2 and NKX2-1 that specify and pattern the foregut endoderm. Furthermore, we documented the gradual conversion of VF epithelial cells from simple precursors expressing cytokeratins 8 and 18 in the embryo into mature stratified epithelial cells also expressing cytokeratins 5 and 14 in the adult. Interestingly, in the adult, cytokeratins 5 and 14 appear to be expressed in all cell layers in the VF, in contrast to their preferential localization to the basal cell layer in surrounding epithelium. To begin investigating the role of signaling molecules in vocal fold development, we characterized the expression pattern of SHH pathway genes, and how loss of Shh affects vocal fold development in the mutant. This study defines the cellular and molecular context and serves as the necessary foundation for future functional investigations of VF formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Mucosa Laríngea/embriología , Morfogénesis/fisiología , Pliegues Vocales/embriología , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Proteínas Nucleares/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(48): 19444-9, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218621

RESUMEN

In the trachea and bronchi of the mouse, airway smooth muscle (SM) and cartilage are localized to complementary domains surrounding the airway epithelium. Proper juxtaposition of these tissues ensures a balance of elasticity and rigidity that is critical for effective air passage. It is unknown how this tissue complementation is established during development. Here we dissect the developmental relationship between these tissues by genetically disrupting SM formation (through Srf inactivation) or cartilage formation (through Sox9 inactivation) and assessing the impact on the remaining lineage. We found that, in the trachea and main bronchi, loss of SM or cartilage resulted in an increase in cell number of the remaining lineage, namely the cartilage or SM, respectively. However, only in the main bronchi, but not in the trachea, did the loss of SM or cartilage lead to a circumferential expansion of the remaining cartilage or SM domain, respectively. In addition to SM defects, cartilage-deficient tracheas displayed epithelial phenotypes, including decreased basal cell number, precocious club cell differentiation, and increased secretoglobin expression. These findings together delineate the mechanisms through which a cell-autonomous disruption of one structural tissue can have widespread consequences on upper airway function.


Asunto(s)
Bronquios/embriología , Cartílago/embriología , Morfogénesis/fisiología , Músculo Liso/embriología , Tráquea/embriología , Traqueomalacia/embriología , Animales , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Pulmón/embriología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción SOX9/metabolismo
13.
Nature ; 454(7204): 638-41, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18594511

RESUMEN

During organ formation and regeneration a proper balance between promoting and restricting growth is critical to achieve stereotypical size. Limb bud outgrowth is driven by signals in a positive feedback loop involving fibroblast growth factor (Fgf) genes, sonic hedgehog (Shh) and Gremlin1 (Grem1). Precise termination of these signals is essential to restrict limb bud size. The current model predicts a sequence of signal termination consistent with that in chick limb buds. Our finding that the sequence in mouse limb buds is different led us to explore alternative mechanisms. Here we show, by analysing compound mouse mutants defective in genes comprising the positive loop, genetic evidence that FGF signalling can repress Grem1 expression, revealing a novel Fgf/Grem1 inhibitory loop. This repression occurs both in mouse and chick limb buds, and is dependent on high FGF activity. These data support a mechanism where the positive Fgf/Shh loop drives outgrowth and an increase in FGF signalling, which triggers the Fgf/Grem1 inhibitory loop. The inhibitory loop then operates to terminate outgrowth signals in the order observed in either mouse or chick limb buds. Our study unveils the concept of a self-promoting and self-terminating circuit that may be used to attain proper tissue size in a broad spectrum of developmental and regenerative settings.


Asunto(s)
Retroalimentación Fisiológica , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esbozos de los Miembros/embriología , Transducción de Señal , Animales , Embrión de Pollo , Retroalimentación Fisiológica/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Esbozos de los Miembros/efectos de los fármacos , Ratones , Ratones Noqueados , Mutación , Transducción de Señal/efectos de los fármacos
14.
PLoS Genet ; 7(3): e1001348, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21455289

RESUMEN

Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA-binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Meiosis , Mitosis , Células Madre/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Quinasa CDC2/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células Germinativas/enzimología , Células Germinativas/metabolismo , Datos de Secuencia Molecular , Fosforilación , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Células Madre/enzimología
15.
Front Cardiovasc Med ; 9: 959815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277776

RESUMEN

Significant cardiorespiratory coordination is required to maintain physiological function in health and disease. Sensory neuronal "cross-talk" between the heart and the lungs is required for synchronous regulation of normal cardiopulmonary function and is most likely mediated by the convergence of sensory neural pathways present in the autonomic ganglia. Using neurotracer approaches with appropriate negative control experiments in a mouse model, presence of cardiorespiratory neurons in the vagal (nodose) ganglia are demonstrated. Furthermore, we found that convergent neurons represent nearly 50% of all cardiac neurons and approximately 35% of all respiratory neurons. The current findings demonstrate a pre-existing neuronal substrate linking cardiorespiratory neurotransmission in the vagal ganglia, and a potentially important link for cardiopulmonary cross-sensitization, which may play an important role in the observed manifestations of cardiopulmonary diseases.

16.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936882

RESUMEN

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Asunto(s)
Pulmón/citología , Pulmón/fisiología , Diferenciación Celular/genética , Bases de Datos como Asunto , Humanos , Pulmón/metabolismo , Regeneración/genética , Análisis de la Célula Individual/métodos
17.
Dev Cell ; 53(1): 73-85.e5, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32142630

RESUMEN

Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.


Asunto(s)
Cartílago/citología , Diferenciación Celular/fisiología , Células Epiteliales/citología , Músculo Liso/citología , Animales , Pulmón/citología , Morfogénesis/fisiología , Contracción Muscular/fisiología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo
18.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164753

RESUMEN

Respiratory failure associated with COVID-19 has placed focus on the lungs. Here, we present single-nucleus accessible chromatin profiles of 90,980 nuclei and matched single-nucleus transcriptomes of 46,500 nuclei in non-diseased lungs from donors of ~30 weeks gestation,~3 years and ~30 years. We mapped candidate cis-regulatory elements (cCREs) and linked them to putative target genes. We identified distal cCREs with age-increased activity linked to SARS-CoV-2 host entry gene TMPRSS2 in alveolar type 2 cells, which had immune regulatory signatures and harbored variants associated with respiratory traits. At the 3p21.31 COVID-19 risk locus, a candidate variant overlapped a distal cCRE linked to SLC6A20, a gene expressed in alveolar cells and with known functional association with the SARS-CoV-2 receptor ACE2. Our findings provide insight into regulatory logic underlying genes implicated in COVID-19 in individual lung cell types across age. More broadly, these datasets will facilitate interpretation of risk loci for lung diseases.


Asunto(s)
COVID-19/genética , COVID-19/virología , Interacciones Microbiota-Huesped/genética , Pulmón/metabolismo , Pulmón/virología , Adulto , Factores de Edad , Células Epiteliales Alveolares/clasificación , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Preescolar , Mapeo Cromosómico , Perfilación de la Expresión Génica , Variación Genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Recién Nacido , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pandemias , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Internalización del Virus
19.
Curr Top Dev Biol ; 132: 67-89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30797518

RESUMEN

While the lung is commonly known for its gas exchange function, it is exposed to signals in the inhaled air and responds to them by collaborating with other systems including immune cells and the neural circuit. This important aspect of lung physiology led us to consider the lung as a sensory organ. Among different cell types within the lung that mediate this role, several recent studies have renewed attention on pulmonary neuroendocrine cells (PNECs). PNECs are a rare, innervated airway epithelial cell type that accounts for <1% of the lung epithelium population. They are enriched at airway branch points. Classical in vitro studies have shown that PNECs can respond to an array of aerosol stimuli such as hypoxia, hypercapnia and nicotine. Recent in vivo evidence suggests an essential role of PNECs at neuroimmunomodulatory sites of action, releasing neuropeptides, neurotransmitters and facilitating asthmatic responses to allergen. In addition, evidence supports that PNECs can function both as progenitor cells and progenitor niches following airway epithelial injury. Increases in PNECs have been documented in a large array of chronic lung diseases. They are also the cells-of-origin for small cell lung cancer. A better understanding of the specificity of their responses to distinct insults, their impact on normal lung function and their roles in the pathogenesis of pulmonary ailments will be the next challenge toward designing therapeutics targeting the neuroendocrine system in lung.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/embriología , Células Neuroendocrinas/metabolismo , Sistemas Neurosecretores/embriología , Animales , Linaje de la Célula/genética , Células Epiteliales/citología , Epitelio/embriología , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Pulmón/citología , Pulmón/metabolismo , Células Neuroendocrinas/citología , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/metabolismo , Células Madre/citología , Células Madre/metabolismo
20.
Sci China Life Sci ; 62(10): 1375-1380, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31463736

RESUMEN

Crouzon syndrome is the result of a gain-of-function point mutation in FGFR2. Mimicking the human mutation, a mouse model of Crouzon syndrome (Fgfr2342Y) recapitulates patient deformities, including failed tracheal cartilage segmentation, resulting in a cartilaginous sleeve in the homozygous mutants. We found that the Fgfr2C342Y/C342Y mutants exhibited an increase in chondrocytes prior to segmentation. This increase is due at least in part to over proliferation. Genetic ablation of chondrocytes in the mutant led to restoration of segmentation in the lateral but not central portion of the trachea. These results suggest that in the Fgfr2C342Y/C342Y mutants, increased cartilage cell proliferation precedes and contributes to the disruption of cartilage segmentation in the developing trachea.


Asunto(s)
Cartílago/metabolismo , Disostosis Craneofacial/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Tráquea/metabolismo , Animales , Huesos/metabolismo , Proliferación Celular , Disostosis Craneofacial/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/metabolismo , Ratones/embriología , Osteoblastos/patología , Fenotipo , Mutación Puntual , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA