Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110965

RESUMEN

Plasmonic nanoparticles for drug delivery have attracted increasing interest over the last few years. Their localized surface plasmon resonance causes photothermal effects on laser irradiation, which allows for delivering drugs in a spatio-temporally controlled manner. Here, we explore the use of gold nanoparticles (AuNP) as carriers for pDNA in combination with pulsed laser irradiation to induce endosomal escape, which is currently considered to be one of the major bottlenecks in macromolecular drug delivery on the intracellular level. In particular, we evaluate nanocomplexes composed of JetPEI (polyethylenimine)pDNA and 10 nm AuNP, which do not exhibit endosomal escape by themselves. After incubating HeLa cells with these complexes, we evaluated endosomal escape and transfection efficiency using low- and high-energy laser pulses. At low laser energy heat is produced by the nanocomplexes, while, at higher laser energy, explosive vapour nanobubbles (VNB) are formed. We investigated the ability of heat transfer and VNB formation to induce endosomal escape and we examine the integrity of pDNA cargo after inducing both photothermal effects. We conclude that JetPEI/pDNA/AuNP complexes are unable to induce meaningful transfection efficiencies because laser treatment causes either dysfunctionality of the cargo when VNB are formed or forms too small pores in the endosomal membrane to allow pDNA to escape in case of heating. We conclude that laser-induced VNB is the most suitable to induce effective pDNA endosomal escape, but a different nanocomplex structure will be required to keep the pDNA intact.


Asunto(s)
Endosomas/metabolismo , Oro , Hipertermia Inducida , Terapia por Luz de Baja Intensidad , Nanopartículas del Metal , Neoplasias/terapia , Polietileneimina , Transfección/métodos , ADN/genética , ADN/farmacología , Endosomas/genética , Endosomas/patología , Oro/química , Oro/farmacología , Células HeLa , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Neoplasias/genética , Neoplasias/metabolismo , Polietileneimina/química , Polietileneimina/farmacología
2.
Eur J Pharm Biopharm ; 129: 184-190, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29859281

RESUMEN

In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.


Asunto(s)
Portadores de Fármacos/química , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ácidos Nucleicos/administración & dosificación , Protones , Permeabilidad de la Membrana Celular , Composición de Medicamentos/métodos , Endosomas/metabolismo , Vectores Genéticos/genética , Humanos , Lípidos/química , Lisosomas/metabolismo , Nanopartículas/química , Ácidos Nucleicos/genética , Polímeros/química , Transfección/métodos
3.
ACS Nano ; 12(3): 2332-2345, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29505236

RESUMEN

In gene therapy, endosomal escape represents a major bottleneck since nanoparticles often remain entrapped inside endosomes and are trafficked toward the lysosomes for degradation. A detailed understanding of the endosomal barrier would be beneficial for developing rational strategies to improve transfection and endosomal escape. By visualizing individual endosomal escape events in live cells, we obtain insight into mechanistic factors that influence proton sponge-based endosomal escape. In a comparative study, we found that HeLa cells treated with JetPEI/pDNA polyplexes have a 3.5-fold increased endosomal escape frequency compared to ARPE-19 cells. We found that endosomal size has a major impact on the escape capacity. The smaller HeLa endosomes are more easily ruptured by the proton sponge effect than the larger ARPE-19 endosomes, a finding supported by a mathematical model based on the underlying physical principles. Still, it remains intriguing that even in the small HeLa endosomes, <10% of the polyplex-containing endosomes show endosomal escape. Further experiments revealed that the membrane of polyplex-containing endosomes becomes leaky to small compounds, preventing effective buildup of osmotic pressure, which in turn prevents endosomal rupture. Analysis of H1299 and A549 cells revealed that endosomal size determines endosomal escape efficiency when cells have comparable membrane leakiness. However, at high levels of membrane leakiness, buildup of osmotic pressure is no longer possible, regardless of endosomal size. Based on our findings that both endosomal size and membrane leakiness have a high impact on proton sponge-based endosomal rupture, we provide important clues toward further improvement of this escape strategy.


Asunto(s)
Endosomas/metabolismo , Plásmidos/administración & dosificación , Polietileneimina/metabolismo , Transfección , Línea Celular , ADN/administración & dosificación , ADN/genética , ADN/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Permeabilidad , Plásmidos/genética , Plásmidos/metabolismo , Protones , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA