Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hepatol ; 80(2): 220-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925078

RESUMEN

BACKGROUND & AIMS: Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS: Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS: We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS: Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS: Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.


Asunto(s)
Hepatitis D Crónica , Virus de la Hepatitis Delta , Humanos , Virus de la Hepatitis Delta/fisiología , Janus Quinasa 1 , Virus de la Hepatitis B , Hepatitis D Crónica/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral
2.
J Virol ; 97(10): e0072223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754761

RESUMEN

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Asunto(s)
Antivirales , Cápside , Virus de la Hepatitis B , Hepatitis B Crónica , Ensamble de Virus , Animales , Humanos , Ratones , Antivirales/clasificación , Antivirales/farmacología , Antivirales/uso terapéutico , Cápside/química , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Células Cultivadas , Virus de la Hepatitis B/química , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Técnicas In Vitro , Ensamble de Virus/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102495

RESUMEN

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Ratones , Animales , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B/metabolismo , Cápside/metabolismo , Hepatocitos/metabolismo , Interferón-alfa/farmacología , Hepatitis B/metabolismo , ADN Viral/genética
4.
J Hepatol ; 78(5): 958-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702177

RESUMEN

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Asunto(s)
COVID-19 , Coinfección , Hepatitis B , Hepatitis D , Humanos , Ratones , Animales , Virus de la Hepatitis Delta/fisiología , Virus de la Hepatitis B/fisiología , Interferones , Antígenos de Hepatitis delta/metabolismo , Hepatitis D/complicaciones , Hepatitis B/complicaciones , Replicación Viral/fisiología , COVID-19/complicaciones , SARS-CoV-2/genética , ARN Viral/genética
5.
Gut ; 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36591611

RESUMEN

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

6.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269929

RESUMEN

Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.


Asunto(s)
Carcinoma Hepatocelular , Infecciones por Chlamydia , Hepatitis B , Hepatitis Viral Humana , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Hepatitis B/complicaciones , Virus de la Hepatitis B , Virus de la Hepatitis Delta , Hepatitis Crónica/complicaciones , Hepatitis Viral Humana/complicaciones , Humanos , Neoplasias Hepáticas/patología
7.
Gut ; 69(1): 158-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833451

RESUMEN

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Ácido Aspártico/análogos & derivados , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Receptor alfa de Estrógeno/metabolismo , Fulvestrant/farmacología , Hepatitis D Crónica/tratamiento farmacológico , Ácido Fosfonoacético/análogos & derivados , Pirimidinas/biosíntesis , Antivirales/farmacología , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Aspartato Carbamoiltransferasa/metabolismo , Ácido Aspártico/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular , Dihidroorotasa/antagonistas & inhibidores , Dihidroorotasa/metabolismo , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Silenciador del Gen , Hepatitis D Crónica/genética , Hepatitis D Crónica/metabolismo , Virus de la Hepatitis Delta/fisiología , Hepatocitos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Resistencia a la Insulina , Estadios del Ciclo de Vida , Mutación con Pérdida de Función , Ácido Fosfonoacético/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/metabolismo , Transducción de Señal , Replicación Viral
8.
Gastroenterology ; 157(2): 537-551.e9, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30978357

RESUMEN

BACKGROUND & AIMS: The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS: Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS: We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate ß-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS: We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.


Asunto(s)
Hepacivirus/patogenicidad , Hepatitis C Crónica/patología , Hepatocitos/patología , Hígado/patología , Animales , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glucosa/metabolismo , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/virología , Hepatocitos/trasplante , Hepatocitos/virología , Humanos , Hígado/citología , Hígado/virología , Metabolómica , Ratones , Peroxisomas/metabolismo , Peroxisomas/patología , Proteómica , Factor de Transcripción STAT3/metabolismo , Quimera por Trasplante
10.
Hepatology ; 68(5): 1695-1709, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29679386

RESUMEN

Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor. In this study, we investigated the functional role of cGAS in sensing HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss-of-function and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes, and HBV-infected human liver chimeric mice. Here, we show that cGAS is expressed in the human liver, primary human hepatocytes, and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral covalently closed circular DNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. Conclusion: HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways.


Asunto(s)
Virus de la Hepatitis B/patogenicidad , Hepatitis B/fisiopatología , Hepatocitos/virología , Evasión Inmune/fisiología , Nucleótidos Cíclicos/metabolismo , Animales , Western Blotting , Técnicas de Cultivo de Célula , ADN Viral/inmunología , Perfilación de la Expresión Génica/métodos , Hepatitis B/inmunología , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune/inmunología , Hibridación Fluorescente in Situ/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Cell Mol Life Sci ; 75(21): 3895-3905, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30097692

RESUMEN

Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.


Asunto(s)
Hepacivirus/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Hepacivirus/patogenicidad , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Hepatitis C/genética , Hepatitis C/virología , Hepatitis D/genética , Hepatitis D/virología , Virus de la Hepatitis Delta/patogenicidad , Hepatocitos/patología , Humanos , Estadios del Ciclo de Vida/genética , Internalización del Virus
12.
Virologie (Montrouge) ; 23(3): 149-159, 2019 06 01.
Artículo en Francés | MEDLINE | ID: mdl-31210131

RESUMEN

An estimated 70 million people are chronically infected with hepatitis D (delta) virus (HDV) worldwide. HDV is a small satellite virus of hepatitis B virus (HBV) requiring HBV for the completion of its cycle. Hepatitis D is the most severe form of chronic viral hepatitis. It is responsible for an acceleration and an aggravation of chronic liver disease compared to HBV monoinfected patients. Current treatments based on pegylated interferon rarely allow viral clearance in chronically infected patients. For long time, the absence of easy-to-use models has limited the knowledge on virus-host interactions. Notably, hepatocyte host factors involved in the viral life cycle remain largely unknown. These host factors are potential therapeutic targets for novel treatment strategies, including molecules currently evaluated in clinical trials. This review summarizes our knowledge on HDV molecular virology and innovative therapeutic strategies targeting hepatocyte host factors.


Asunto(s)
Antivirales , Hepatitis D , Virus de la Hepatitis Delta , Antivirales/farmacología , Antivirales/uso terapéutico , Virus de la Hepatitis B , Hepatitis D/tratamiento farmacológico , Virus de la Hepatitis Delta/genética , Humanos , Interferones/uso terapéutico
13.
BMC Genomics ; 19(1): 482, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921219

RESUMEN

BACKGROUND: The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. RESULTS: We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. CONCLUSIONS: Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel insights in the molecular mechanisms explaining the resistance to VHSV in rainbow trout. Our data also provide a collection of potential markers for resistance and susceptibility of rainbow trout to VHSV infection.


Asunto(s)
Enfermedades de los Peces/genética , Oncorhynchus mykiss/genética , Animales , Línea Celular , Susceptibilidad a Enfermedades/metabolismo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Innata/genética , Interferones/genética , Interferones/metabolismo , Oncorhynchus mykiss/fisiología , Sitios de Carácter Cuantitativo/genética
14.
Virologie (Montrouge) ; 22(1): 55-66, 2018 02 01.
Artículo en Francés | MEDLINE | ID: mdl-33111669

RESUMEN

Liver chronic infections by hepatotropic viruses remain a major health problem worldwide. Hepatitis B, C, and D viruses (HBV, HCV, HDV) are responsible for severe liver damages. In spite of different viral structures and life cycles, they all exclusively infect the liver, suggesting the presence of hepatocyte-specific factors allowing viral infection. If viral life cycles are already well described, the molecular interactions between liver host factors and viral structures remain elusive. Host factors represent promising targets for the development of new antiviral strategies. Recently, the bile acid transporter NTCP, mainly expressed at the cell surface of hepatocytes, was described as the first bona-fide receptor for both HBV and HDV. Moreover, this solute carrier was shown to be involved in the modulation of HCV entry, confirming its importance in liver infection by hepatic viruses. This review summarizes the interactions between NTCP and these three major viruses.

15.
Gut ; 66(5): 896-907, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27609828

RESUMEN

OBJECTIVE: The HCV life cycle and the lipid metabolism are inextricably intertwined. In the blood, HCV virions are associated with lipoproteins, forming lipoviroparticles (LVPs), which are the most infectious form of the virus. Apolipoprotein E (apoE), a key LVP component, plays an essential role in HCV entry, assembly and egress. ApoE is also a cell host factor involved in lipoprotein homeostasis. Although the majority of apoE is associated with lipoproteins, a lipid-free (LF) form exists in blood. However, the role of LF-apoE in both lipid metabolism and HCV life cycle is poorly understood. DESIGN: In this study, using the cell culture-derived HCV model system in human hepatoma Huh7.5.1 cells and primary human hepatocytes (PHH), we investigated the effect of LF-apoE on the early steps of HCV life cycle and on the lipid metabolism of hepatic cells. RESULTS: A dose-dependent decrease in HCV replication was observed when Huh7.5.1 cells and PHH were treated with increasing amounts of LF-apoE. We showed that LF-apoE acts on HCV replication independently of previously described apoE receptors. We observed that LF-apoE induced a marked hepatic cholesterol efflux via the ATP-binding cassette subfamily G member 1 (ABCG1) protein that in turn inhibits HCV replication. LF-apoE also increases both apolipoprotein AI and high-density lipoprotein production. CONCLUSIONS: Our findings highlight a new mechanism in lipid metabolism regulation and interaction of the lipid metabolism with the HCV life cycle, which may be important for viral pathogenesis and might also be explored for antiviral therapy.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Colesterol/metabolismo , Hepacivirus/fisiología , Replicación Viral/efectos de los fármacos , Apolipoproteína A-I/biosíntesis , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Hepacivirus/crecimiento & desarrollo , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Lipoproteínas HDL/biosíntesis , Microdominios de Membrana , Internalización del Virus
17.
Hepatology ; 63(1): 35-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26224662

RESUMEN

UNLABELLED: Chronic hepatitis B and D infections are major causes of liver disease and hepatocellular carcinoma worldwide. Efficient therapeutic approaches for cure are absent. Sharing the same envelope proteins, hepatitis B virus and hepatitis delta virus use the sodium/taurocholate cotransporting polypeptide (a bile acid transporter) as a receptor to enter hepatocytes. However, the detailed mechanisms of the viral entry process are still poorly understood. Here, we established a high-throughput infectious cell culture model enabling functional genomics of hepatitis delta virus entry and infection. Using a targeted RNA interference entry screen, we identified glypican 5 as a common host cell entry factor for hepatitis B and delta viruses. CONCLUSION: These findings advance our understanding of virus cell entry and open new avenues for curative therapies. As glypicans have been shown to play a role in the control of cell division and growth regulation, virus-glypican 5 interactions may also play a role in the pathogenesis of virus-induced liver disease and cancer.


Asunto(s)
Glipicanos/fisiología , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis Delta/patogenicidad , ARN no Traducido/fisiología , Internalización del Virus , Células Cultivadas , Humanos
20.
Gastroenterology ; 157(5): 1431-1432, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31586567
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA