RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [Ki] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (Ki = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (Ki = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.
Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , COVID-19/virología , Células Cultivadas , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ingeniería Genética , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , SARS-CoV-2/metabolismo , Relación Estructura-Actividad , Replicación Viral , Tratamiento Farmacológico de COVID-19RESUMEN
SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.
Asunto(s)
Vacunas contra la COVID-19 , Expresión Génica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/farmacología , Humanos , Ratones , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , SARS-CoV-2/química , SARS-CoV-2/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/farmacologíaRESUMEN
Human whipworm (Trichuris trichiura) infects approximately 1 in 15 people worldwide, representing the leading infectious cause of colitis and subsequent, inflammatory bowel disease (IBD). Current control measures focused on mass deworming have had limited success due to low drug efficacies. Vaccination would be an ideal, cost-effective strategy to induce protective immunity, leading to control of infection and transmission. Here we report the identification of whey acidic protein, a whipworm secretory protein, as a strong immunogen for inducing protective efficacy in a surrogate mouse T. muris infection model. The recombinant WAP protein (rTm-WAP49), as well as a single, highly conserved repeat within WAP (fragment 8) expressed as an Na-GST-1 fusion protein (rTm-WAP-F8+Na-GST-1), generate a strong T helper type 2 (Th2) immune response when delivered as subcutaneous vaccines formulated with Montanide ISA 720. Oral challenge with T. muris infective eggs following vaccination led to a significant reduction in worm burden of 48% by rTm-WAP49 and 33% by rTm-WAP-F8+Na-GST-1. The cellular immune correlates of protection included significant antigen-specific production of Th2 cytokines IL-4, IL-9, and IL-13 by cells isolated from the vaccine-draining inguinal lymph nodes, parasite-draining mesenteric lymph nodes, and spleen in mice vaccinated with either rTm-WAP49 or rTm-WAP-F8+Na-GST-1. The humoral immune correlates included a high antigen-specific ratio of IgG1 to IgG2a, without eliciting an IgE-mediated allergic response. Immunofluorescent staining of adult T. muris with WAP antisera identified the worm's pathogenic stichosome organ as the site of secretion of native Tm-WAP protein into the colonic mucosa. Given the high sequence conservation for the WAP proteins from T. muris and T. trichiura, the results presented here support the WAP protein to be further evaluated as a potential human whipworm vaccine candidate.
Asunto(s)
Inmunidad , Proteínas de la Leche/inmunología , Tricuriasis/prevención & control , Trichuris/inmunología , Animales , Anticuerpos Antihelmínticos/metabolismo , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Antígenos Helmínticos/farmacología , Inmunidad/efectos de los fármacos , Inmunidad/genética , Masculino , Ratones , Ratones Endogámicos AKR , Ratones Noqueados , Ratones SCID , Proteínas de la Leche/genética , Proteínas de la Leche/farmacología , Tricuriasis/inmunología , Trichuris/genética , Vacunación/métodosRESUMEN
E6020 is a synthetic agonist of Toll-like receptor-4 (TLR4). The purpose of this study was to evaluate the effect of different doses of E6020-SE on Trypanosoma cruzi-specific immune responses and its ability to confer protection against acute lethal infection in mice. Forty female BALB/c were infected with 500 trypomastigotes of T cruzi H1 strain, divided into four groups (n = 10) and treated at 7- and 14-day post-infection (dpi) with different doses of E6020-SE or PBS (control). Survival was followed for 51 days, mice were euthanized and hearts were collected to evaluate parasite burden, inflammation and fibrosis. We found significantly higher survival and lower parasite burdens in mice injected with E6020-SE at all doses compared to the control group. However, E6020-SE treatment did not significantly reduce cardiac inflammation or fibrosis. On the other hand, E6020-SE modulated Th1 and Th2 cytokines, decreasing IFN-γ and IL-4 in a dose-dependent manner after stimulation with parasite antigens. We conclude that E6020-SE alone increased survival by decreasing cardiac parasite burdens in BALB/c mice acutely infected with T cruzi but failed to prevent cardiac damage. Our results suggest that for optimal protection, a vaccine antigen is necessary to balance and orient a protective immune response.
Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Fosfolípidos/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Enfermedad de Chagas/inmunología , Citocinas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Trypanosoma cruzi/inmunologíaRESUMEN
Chagas disease affects 6 to 7 million people worldwide, resulting in significant disease burdens and health care costs in countries of endemicity. Chemotherapeutic treatment is restricted to two parasiticidal drugs, benznidazole and nifurtimox. Both drugs are highly effective during acute disease but are only minimally effective during chronic disease and fraught with significant adverse clinical effects. In experimental models, vaccines can be used to induce parasite-specific balanced TH1/TH2 immune responses that effectively reduce parasite burdens and associated inflammation while minimizing adverse effects. The objective of this study was to determine the feasibility of vaccine-linked chemotherapy for reducing the amount of benznidazole required to significantly reduce blood and tissue parasite burdens. In this study, we were able to achieve a 4-fold reduction in the amount of benznidazole required to significantly reduce blood and tissue parasite burdens by combining the low-dose benznidazole with a recombinant vaccine candidate, Tc24 C4, formulated with a synthetic Toll-like 4 receptor agonist, E6020, in a squalene oil-in-water emulsion. Additionally, vaccination induced a robust parasite-specific balanced TH1/TH2 immune response. We concluded that vaccine-linked chemotherapy is a feasible option for advancement to clinical use for improving the tolerability and efficacy of benznidazole.
Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inmunología , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Enfermedad Aguda , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , Enfermedad de Chagas/parasitología , Citocinas/metabolismo , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunohistoquímica , Nitroimidazoles/farmacología , Carga de Parásitos , Vacunas Antiprotozoos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/inmunología , VacunaciónRESUMEN
Ascaris lumbricoides (roundworm) is the most common helminth infection globally and a cause of lifelong morbidity that may include allergic airway disease, an asthma phenotype. We hypothesize that Ascaris larval migration through the lungs leads to persistent airway hyperresponsiveness (AHR) and type 2 inflammatory lung pathology despite resolution of infection that resembles allergic airway disease. Mice were infected with Ascaris by oral gavage. Lung AHR was measured by plethysmography and histopathology with hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stains, and cytokine concentrations were measured by using Luminex Magpix. Ascaris-infected mice were compared to controls or mice with allergic airway disease induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Ascaris-infected mice developed profound AHR starting at day 8 postinfection (p.i.), peaking at day 12 p.i. and persisting through day 21 p.i., despite resolution of infection, which was significantly increased compared to controls and OVA/OVA mice. Ascaris-infected mice had a robust type 2 cytokine response in both the bronchoalveolar lavage (BAL) fluid and lung tissue, similar to that of the OVA/OVA mice, including interleukin-4 (IL-4) (P < 0.01 and P < 0.01, respectively), IL-5 (P < 0.001 and P < 0.001), and IL-13 (P < 0.001 and P < 0.01), compared to controls. By histopathology, Ascaris-infected mice demonstrated early airway remodeling similar to, but more profound than, that in OVA/OVA mice. We found that Ascaris larval migration causes significant pulmonary damage, including AHR and type 2 inflammatory lung pathology that resembles an extreme form of allergic airway disease. Our findings indicate that ascariasis may be an important cause of allergic airway disease in regions of endemicity.
Asunto(s)
Ascariasis/fisiopatología , Hipersensibilidad/parasitología , Pulmón/patología , Hipersensibilidad Respiratoria/parasitología , Animales , Ascariasis/inmunología , Ascaris/patogenicidad , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Femenino , Interleucina-13/inmunología , Interleucina-4/inmunología , Interleucina-5/inmunología , Larva/patogenicidad , Pulmón/parasitología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Células Th2/inmunologíaRESUMEN
Trypanosoma cruzi 24 (Tc24) is a recently described B-cell superantigen (BC-SAg) expressed by all developmental stages of T. cruzi, the causative agent of Chagas disease. BC-SAgs are immunoevasins that interfere with the catalytic response available to a subset of natural antibodies comprising the preimmune (innate) repertoire. Electrophilic modifications of BC-SAgs facilitate the formation of highly energetic covalent reactions favouring B-cell differentiation instead of B-cell downregulation. Therefore, the aim of this study was to convert the inhibitory signals delivered to B-cells with specificity for Tc24 into activating signals after conjugating electrophilic phosphonate groups to recombinant Tc24 (eTc24). Covalent immunization with eTc24 increased the binding affinity between eTc24 and naturally nucleophilic immunoglobulins with specificity for this BC-SAg. Flow cytometric analyses demonstrated that eTc24 but not Tc24 or other electrophilically modified control proteins bound Tc24-specific IgM+ B-cells covalently. In addition, immunization of mice with eTc24 adjuvanted with ISA720 induced the production of catalytic responses specific for Tc24 compared to the abrogation of this response in mice immunized with Tc24/ISA720. eTc24-immunized mice also produced IgMs that bound recombinant Tc24 compared to the binding observed for IgMs purified from non eTc24-immunized controls. These data suggest that eTc24 immunization overrides the immunosuppressive properties of this BC-SAg.
Asunto(s)
Anticuerpos Catalíticos/inmunología , Anticuerpos Antiprotozoarios/inmunología , Enfermedad de Chagas/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/inmunología , Animales , Anticuerpos Antiprotozoarios/química , Formación de Anticuerpos , Linfocitos B/inmunología , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/parasitología , Femenino , Humanos , Inmunización , Inmunoglobulina M/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/química , Trypanosoma cruzi/química , Trypanosoma cruzi/genética , VacunaciónRESUMEN
Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24âa flagellar antigen and ASP-2âan amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.
Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Ratones , Animales , ARN , Distribución Tisular , Enfermedad de Chagas/prevención & control , Antígenos de Protozoos/genética , ARN Mensajero , TecnologíaRESUMEN
INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.
Asunto(s)
Inmunidad Adaptativa , Adyuvantes Inmunológicos , Inmunidad Innata , Modelos Animales , Desarrollo de Vacunas , Vacunas , Pez Cebra , Pez Cebra/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Humanos , Vacunas/inmunología , Vacunas/administración & dosificación , Vacunología/métodosRESUMEN
Tc24 is a Trypanosoma cruzi-derived flagellar protein that, when formulated with a TLR-4 agonist adjuvant, induces a balanced immune response in mice, elevating IgG2a antibody titers and IFN-γ levels. Furthermore, vaccination with the recombinant Tc24 protein can reduce parasite levels and improve survival during acute infection. Although some mRNA vaccines have been proven to elicit a stronger immune response than some protein vaccines, they have not been used against T. cruzi. This work evaluates the immunogenicity of a heterologous prime/boost vaccination regimen using protein and mRNA-based Tc24 vaccines. Mice (C57BL/6) were vaccinated twice subcutaneously, three weeks apart, with either the Tc24-C4 protein + glucopyranosyl A (GLA)-squalene emulsion, Tc24 mRNA Lipid Nanoparticles, or with heterologous protein/mRNA or mRNA/protein combinations, respectively. Two weeks after the last vaccination, mice were euthanized, spleens were collected to measure antigen-specific T-cell responses, and sera were collected to evaluate IgG titers and isotypes. Heterologous presentation of the Tc24 antigen generated antigen-specific polyfunctional CD8+ T cells, a balanced Th1/Th2/Th17 cytokine profile, and a balanced humoral response with increased serum IgG, IgG1 and IgG2c antibody responses. We conclude that heterologous vaccination using Tc24 mRNA to prime and Tc24-C4 protein to boost induces a broad and robust antigen-specific immune response that was equivalent or superior to two doses of a homologous protein vaccine, the homologous mRNA vaccine and the heterologous Tc24-C4 Protein/mRNA vaccine.
RESUMEN
Introduction: Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function. Methods: Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration. Results: Vaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A. Discussion: These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Infección Persistente , Enfermedad de Chagas/parasitología , Corazón , Proteínas RecombinantesRESUMEN
The development of SARS-CoV-2 main protease (Mpro) inhibitors for the treatment of COVID-19 has mostly benefitted from X-ray structures and preexisting knowledge of inhibitors; however, an efficient method to generate Mpro inhibitors, which circumvents such information would be advantageous. As an alternative approach, we show here that DNA-encoded chemistry technology (DEC-Tec) can be used to discover inhibitors of Mpro. An affinity selection of a 4-billion-membered DNA-encoded chemical library (DECL) using Mpro as bait produces novel non-covalent and non-peptide-based small molecule inhibitors of Mpro with low nanomolar Ki values. Furthermore, these compounds demonstrate efficacy against mutant forms of Mpro that have shown resistance to the standard-of-care drug nirmatrelvir. Overall, this work demonstrates that DEC-Tec can efficiently generate novel and potent inhibitors without preliminary chemical or structural information.
RESUMEN
(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen.
RESUMEN
INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.
Asunto(s)
COVID-19 , Saccharomyces cerevisiae , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tecnología , Proteínas Recombinantes/genética , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
INTRODUCTION: Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment the existing antiparasitic chemotherapy drugs. AREAS COVERED: We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Furthermore, we report vaccine-linked chemotherapy, a dose-sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION: Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Enfermedad de Chagas/prevención & control , HumanosRESUMEN
We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum + CpG. We also evaluated mice immunized with RBD/alum + CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum + CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum + CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2, including variants of concern.
Asunto(s)
COVID-19 , SARS-CoV-2 , Compuestos de Alumbre , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Inmunización Pasiva , Ratones , Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19RESUMEN
We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General of India. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.
RESUMEN
Tc24-C4, a modified recombinant flagellar calcium-binding protein of Trypanosoma cruzi, is under development as a therapeutic subunit vaccine candidate to prevent or delay progression of chronic Chagasic cardiomyopathy. When combined with Toll-like receptor agonists, Tc24-C4 immunization reduces parasitemia, parasites in cardiac tissue, and cardiac fibrosis and inflammation in animal models. To support further research on the vaccine candidate and its mechanism of action, murine monoclonal antibodies (mAbs) against Tc24-C4 were generated. Here, we report new findings made with mAb Tc24-C4/884 that detects Tc24-WT and Tc24-C4, as well as native Tc24 in T. cruzi on ELISA, western blots, and different imaging techniques. Surprisingly, detection of Tc24 by Tc24-C/884 in fixed T. cruzi trypomastigotes required permeabilization of the parasite, revealing that Tc24 is not exposed on the surface of T. cruzi, making a direct role of antibodies in the induced protection after Tc24-C4 immunization less likely. We further observed that after immunostaining T. cruzi-infected cells with mAb Tc24-C4/884, the expression of Tc24 decreases significantly when T. cruzi trypomastigotes enter host cells and transform into amastigotes. However, Tc24 is then upregulated in association with parasite flagellar growth linked to re-transformation into the trypomastigote form, prior to host cellular escape. These observations are discussed in the context of potential mechanisms of vaccine immunity.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , ARN Protozoario/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Anticuerpos Monoclonales , Linfocitos B , Enfermedad de Chagas/parasitología , Femenino , Humanos , Hibridomas , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos , ARN Protozoario/genética , Trypanosoma cruzi/genéticaRESUMEN
Chagas disease resulting from Trypanosoma cruzi infection leads to a silent, long-lasting chronic neglected tropical disease affecting the poorest and underserved populations around the world. Antiparasitic treatment with benznidazole does not prevent disease progression or death in patients with established cardiac disease. Our consortium is developing a therapeutic vaccine based on the T. cruzi flagellar-derived antigen Tc24-C4 formulated with a Toll-like receptor 4 agonist adjuvant, to complement existing chemotherapy and improve treatment efficacy. Here we demonstrate that therapeutic treatment of acutely infected mice with a reduced dose of benznidazole concurrently with vaccine treatment - also known as "vaccine-linked chemotherapy"-induced a TH17 like immune response, with significantly increased production of antigen specific IL-17A, IL-23 and IL-22, and CD8 + T lymphocytes, as well as significantly increased T. cruzi specific IFNγ-producing CD4 + T lymphocytes. Significantly reduced cardiac inflammation, fibrosis, and parasite burdens and improved survival were achieved by vaccine-linked chemotherapy and individual treatments. Importantly, low dose treatments were comparably efficacious to high dose treatments, demonstrating potential dose sparing effects. We conclude that through induction of TH17 immune responses vaccine-linked chemotherapeutic strategies could bridge the tolerability and efficacy gaps of current drug treatment in Chagasic patients.
Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Interleucina-17/inmunología , Nitroimidazoles/uso terapéutico , Vacunas Antiprotozoos/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Trypanosoma cruzi/inmunologíaRESUMEN
There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.