Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881301

RESUMEN

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Cinetocoros/química , Complejos Multiproteicos/química , Animales , Aurora Quinasa B/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Químicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
Mol Cell ; 82(11): 2113-2131.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35525244

RESUMEN

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.


Asunto(s)
Cinetocoros , Nucleosomas , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Microscopía por Crioelectrón , Humanos , Cinetocoros/metabolismo , Nucleosomas/genética
3.
EMBO J ; 42(13): e112504, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37203876

RESUMEN

During cell division, kinetochores link chromosomes to spindle microtubules. The Ndc80 complex, a crucial microtubule binder, populates each kinetochore with dozens of copies. Whether adjacent Ndc80 complexes cooperate to promote microtubule binding remains unclear. Here we demonstrate that the Ndc80 loop, a short sequence that interrupts the Ndc80 coiled-coil at a conserved position, folds into a more rigid structure than previously assumed and promotes direct interactions between full-length Ndc80 complexes on microtubules. Mutations in the loop impair these Ndc80-Ndc80 interactions, prevent the formation of force-resistant kinetochore-microtubule attachments, and cause cells to arrest in mitosis for hours. This arrest is not due to an inability to recruit the kinetochore-microtubule stabilizing SKA complex and cannot be overridden by mutations in the Ndc80 tail that strengthen microtubule attachment. Thus, loop-mediated organization of adjacent Ndc80 complexes is crucial for stable end-on kinetochore-microtubule attachment and spindle assembly checkpoint satisfaction.


Asunto(s)
Cinetocoros , Microtúbulos , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Unión Proteica , Animales
4.
Annu Rev Biochem ; 80: 943-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675921

RESUMEN

GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,ß topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.


Asunto(s)
Secuencias de Aminoácidos , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al GTP/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
5.
EMBO J ; 41(9): e110411, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35373361

RESUMEN

In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.


Asunto(s)
Cinetocoros , Huso Acromático , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
6.
Cell ; 141(5): 812-21, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510928

RESUMEN

Arfs are small G proteins that have a key role in vesicle trafficking and cytoskeletal remodeling. ArfGAP proteins stimulate Arf intrinsic GTP hydrolysis by a mechanism that is still unresolved. Using a fusion construct we solved the structure of the ArfGAP ASAP3 in complex with Arf6 in the transition state. This structure clarifies the ArfGAP catalytic mechanism and shows a glutamine((Arf6)) and an arginine finger((ASAP3)) as the important catalytic residues. Unexpectedly the structure shows a calcium ion, liganded by both proteins in the complex interface, stabilizing the interaction and orienting the catalytic machinery. Calcium stimulates the GAP activity of ASAPs, but not other members of the ArfGAP family. This type of regulation is unique for GAPs and any other calcium-regulated processes and hints at a crosstalk between Ca(2+) and Arf signaling.


Asunto(s)
Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Calcio/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Factor 6 de Ribosilación del ADP , Secuencia de Aminoácidos , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia
7.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675584

RESUMEN

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Asunto(s)
Unión Proteica , Cristalografía por Rayos X , Ligandos , Humanos , Modelos Moleculares , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sitios de Unión , Proteínas/química , Conformación Proteica
8.
Nat Chem Biol ; 15(7): 710-720, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31222192

RESUMEN

Autophagy mediates the degradation of damaged proteins, organelles and pathogens, and plays a key role in health and disease. Thus, the identification of new mechanisms involved in the regulation of autophagy is of major interest. In particular, little is known about the role of lipids and lipid-binding proteins in the early steps of autophagosome biogenesis. Using target-agnostic, high-content, image-based identification of indicative phenotypic changes induced by small molecules, we have identified autogramins as a new class of autophagy inhibitor. Autogramins selectively target the recently discovered cholesterol transfer protein GRAM domain-containing protein 1A (GRAMD1A, which had not previously been implicated in autophagy), and directly compete with cholesterol binding to the GRAMD1A StART domain. GRAMD1A accumulates at sites of autophagosome initiation, affects cholesterol distribution in response to starvation and is required for autophagosome biogenesis. These findings identify a new biological function of GRAMD1A and a new role for cholesterol in autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas de la Membrana/metabolismo , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Tumorales Cultivadas
9.
Angew Chem Int Ed Engl ; 60(4): 1813-1820, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33022847

RESUMEN

The scaffolding protein RbAp48 is part of several epigenetic regulation complexes and is overexpressed in a variety of cancers. In order to develop tool compounds for the study of RbAp48 function, we have developed peptide inhibitors targeting the protein-protein interaction interface between RbAp48 and the scaffold protein MTA1. Based on a MTA1-derived linear peptide with low micromolar affinity and informed by crystallographic analysis, a bicyclic peptide was developed that inhibits the RbAp48/MTA1 interaction with a very low nanomolar KD value of 8.56 nM, and which showed appreciable stability against cellular proteases. Design included exchange of a polar amide cyclization strategy to hydrophobic aromatic linkers enabling mono- and bicyclization by means of cysteine alkylation, which improved affinity by direct interaction of the linkers with a hydrophobic residue on RbAp48. Our results demonstrate that stepwise evolution of a structure-based design is a suitable strategy for inhibitor development targeting PPIs.


Asunto(s)
Diseño de Fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Proteína 4 de Unión a Retinoblastoma/antagonistas & inhibidores , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Conformación Proteica , Termodinámica
10.
Nature ; 508(7494): 61-5, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24572368

RESUMEN

Tripartite Tc toxin complexes of bacterial pathogens perforate the host membrane and translocate toxic enzymes into the host cell, including in humans. The underlying mechanism is complex but poorly understood. Here we report the first, to our knowledge, high-resolution structures of a TcA subunit in its prepore and pore state and of a complete 1.7 megadalton Tc complex. The structures reveal that, in addition to a translocation channel, TcA forms four receptor-binding sites and a neuraminidase-like region, which are important for its host specificity. pH-induced opening of the shell releases an entropic spring that drives the injection of the TcA channel into the membrane. Binding of TcB/TcC to TcA opens a gate formed by a six-bladed ß-propeller and results in a continuous protein translocation channel, whose architecture and properties suggest a novel mode of protein unfolding and translocation. Our results allow us to understand key steps of infections involving Tc toxins at the molecular level.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Photorhabdus/química , ADP Ribosa Transferasas/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Modelos Moleculares , Neuraminidasa/química , Porosidad , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Desplegamiento Proteico , Relación Estructura-Actividad
11.
Biol Chem ; 398(5-6): 637-651, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28002022

RESUMEN

Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Animales , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
12.
Biophys J ; 110(4): 840-9, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26541066

RESUMEN

Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth.


Asunto(s)
Criopreservación/métodos , Hielo , Supervivencia Celular , Microscopía por Crioelectrón , Cristalización , Células HeLa , Humanos , Difracción de Rayos X
13.
J Biol Chem ; 290(40): 24079-90, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26272610

RESUMEN

Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis.


Asunto(s)
GTP Fosfohidrolasas/química , Proteínas Activadoras de GTPasa/química , Guanosina Trifosfato/química , Proteínas de la Membrana/química , Espectrofotometría Infrarroja , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Hidrólisis , Magnesio/química , Manganeso/química , Simulación de Dinámica Molecular , Mutación , Fosfatos/química , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Tirosina/química
14.
EMBO J ; 31(20): 4085-94, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22960633

RESUMEN

Access to the ciliary membrane for trans-membrane or membrane-associated proteins is a regulated process. Previously, we have shown that the closely homologous small G proteins Arl2 and Arl3 allosterically regulate prenylated cargo release from PDEδ. UNC119/HRG4 is responsible for ciliary delivery of myristoylated cargo. Here, we show that although Arl3 and Arl2 bind UNC119 with similar affinities, only Arl3 allosterically displaces cargo by accelerating its release by three orders of magnitude. Crystal structures of Arl3 and Arl2 in complex with UNC119a reveal the molecular basis of specificity. Contrary to previous structures of GTP-bound Arf subfamily proteins, the N-terminal amphipathic helix of Arl3·GppNHp is not displaced by the interswitch toggle but remains bound on the surface of the protein. Opposite to the mechanism of cargo release on PDEδ, this induces a widening of the myristoyl binding pocket. This leads us to propose that ciliary targeting of myristoylated proteins is not only dependent on nucleotide status but also on the cellular localization of Arl3.


Asunto(s)
Factores de Ribosilacion-ADP/química , Proteínas Adaptadoras Transductoras de Señales/química , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Cristalografía por Rayos X , Ácidos Grasos Monoinsaturados/metabolismo , Polarización de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Transducina
15.
EMBO J ; 30(20): 4185-97, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21847100

RESUMEN

The bacterium Myxococcus xanthus uses a G protein cycle to dynamically regulate the leading/lagging pole polarity axis. The G protein MglA is regulated by its GTPase-activating protein (GAP) MglB, thus resembling Ras family proteins. Here, we show structurally and biochemically that MglA undergoes a dramatic, GDP-GTP-dependent conformational change involving a screw-type forward movement of the central ß2-strand, never observed in any other G protein. This movement and complex formation with MglB repositions the conserved residues Arg53 and Gln82 into the active site. Residues required for catalysis are thus not provided by the GAP MglB, but by MglA itself. MglB is a Roadblock/LC7 protein and functions as a dimer to stimulate GTP hydrolysis in a 2:1 complex with MglA. In vivo analyses demonstrate that hydrolysis mutants abrogate Myxococcus' ability to regulate its polarity axis changing the reversal behaviour from stochastic to oscillatory and that both MglA GTPase activity and MglB GAP catalysis are essential for maintaining a proper polarity axis.


Asunto(s)
Proteínas Bacterianas/química , Guanosina Trifosfato/metabolismo , Myxococcus xanthus/fisiología , Proteínas ras/química , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Polaridad Celular , Glutamina/química , Glutamina/deficiencia , Hidrólisis , Datos de Secuencia Molecular , Myxococcus xanthus/metabolismo , Conformación Proteica , Proteínas ras/genética
16.
EMBO Rep ; 14(2): 199-205, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23288104

RESUMEN

Legionella pneumophila is an intracellularly surviving pathogen that releases about 270 different proteins into the host cell during infection. A set of secreted proteins takes control of the vesicular trafficking regulator Rab1. Legionella LepB inactivates Rab1 by acting as a GTPase-activating protein (GAP). We present the crystal structure of the Rab1b:LepB complex together with a thorough biochemical analysis and show that the GAP domain of LepB consists of an unusual fold. LepB acts by an atypical RabGAP mechanism that is reminiscent of classical GAPs and therefore sets the protein apart from mammalian TBC-like GAPs. Surprisingly, LepB can function as a GAP for Rab3, Rab8, Rab13 and Rab35, too, suggesting that it has a broader cellular role than previously thought.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/enzimología , Proteínas de Unión al GTP rab1/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Guanosina Trifosfato/química , Interacciones Huésped-Patógeno , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rab/química
17.
Proc Natl Acad Sci U S A ; 109(2): 460-5, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203965

RESUMEN

Regulation of protein function is often linked to a conformational switch triggered by chemical or physical signals. To evaluate such conformational changes and to elucidate the underlying molecular mechanisms of subsequent protein function, experimental identification of conformational substates and characterization of conformational equilibria are mandatory. We apply pressure modulation in combination with FTIR spectroscopy to reveal equilibria between spectroscopically resolved substates of the lipidated signaling protein N-Ras. Pressure has the advantage that its thermodynamic conjugate is volume, a parameter that is directly related to structure. The conformational dynamics of N-Ras in its different nucleotide binding states in the absence and presence of a model biomembrane was probed by pressure perturbation. We show that not only nucleotide binding but also the presence of the membrane has a drastic effect on the conformational dynamics and selection of conformational substates of the protein, and a new substate appearing upon membrane binding could be uncovered. Population of this new substate is accompanied by structural reorientations of the G domain, as also indicated by complementary ATR-FTIR and IRRAS measurements. These findings thus illustrate that the membrane controls signaling conformations by acting as an effective interaction partner, which has consequences for the G-domain orientation of membrane-associated N-Ras, which in turn is known to be critical for its effector and modulator interactions. Finally, these results provide insights into the influence of pressure on Ras-controlled signaling events in organisms living under extreme environmental conditions as they are encountered in the deep sea where pressures reach the kbar range.


Asunto(s)
Membranas/metabolismo , Modelos Moleculares , Presión , Conformación Proteica , Transducción de Señal/genética , Proteínas ras/química , Lípidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Proteínas ras/metabolismo
18.
Proc Natl Acad Sci U S A ; 109(26): 10322-7, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689969

RESUMEN

Mutations in human leucine-rich-repeat kinase 2 (LRRK2) have been found to be the most frequent cause of late-onset Parkinson disease. Here we show that Dictyostelium discoideum Roco4 is a suitable model to study the structural and biochemical characteristics of the LRRK2 kinase and can be used for optimization of current and identification of new LRRK2 inhibitors. We have solved the structure of Roco4 kinase wild-type, Parkinson disease-related mutants G1179S and L1180T (G2019S and I2020T in LRRK2) and the structure of Roco4 kinase in complex with the LRRK2 inhibitor H1152. Taken together, our data give important insight in the LRRK2 activation mechanism and, most importantly, explain the G2019S-related increase in LRRK2 kinase activity.


Asunto(s)
Mutación , Enfermedad de Parkinson/enzimología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedad de Parkinson/genética , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 288(38): 27002-27018, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23913689

RESUMEN

In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of ß-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the ß-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tioléster Hidrolasas/antagonistas & inhibidores , Toxoplasma/enzimología , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Humanos , Lactonas/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología Estructural de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Toxoplasma/genética , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/enzimología , Toxoplasmosis/genética
20.
Curr Biol ; 34(11): 2279-2293.e6, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776902

RESUMEN

Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.


Asunto(s)
Proteínas de Ciclo Celular , Cinetocoros , Microtúbulos , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cinetocoros/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA