Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805272

RESUMEN

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Asunto(s)
Fusión Celular , Mioblastos , Fosfatos de Fosfatidilinositol , Podosomas , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Podosomas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Desarrollo de Músculos/fisiología
2.
Arterioscler Thromb Vasc Biol ; 44(3): 620-634, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38152888

RESUMEN

BACKGROUND: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS: Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS: We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS: Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.


Asunto(s)
Aterosclerosis , Fosfatidilinositol 3-Quinasa Clase I , Animales , Humanos , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Autofagia , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Mecánico , Fosfatidilinositol 3-Quinasa Clase I/metabolismo
3.
EMBO Rep ; 22(6): e51299, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33880878

RESUMEN

Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2ß) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2ß in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2ß showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2ß in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2ß as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.


Asunto(s)
Células Endoteliales , Fosfatidilinositol 3-Quinasas , Uniones Adherentes/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 42(8): 987-1004, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708031

RESUMEN

BACKGROUND: Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets. METHODS: For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets. RESULTS: We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML (transient receptor potential mucolipin) 1 and TPC (two pore segment channel) 2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation. CONCLUSIONS: These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.


Asunto(s)
Megacariocitos , Fosfatidilinositol 3-Quinasas , Fosfatidilinositoles , Animales , Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Humanos , Megacariocitos/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo
5.
Acta Neuropathol ; 144(3): 537-563, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35844027

RESUMEN

X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.


Asunto(s)
Miopatías Estructurales Congénitas , Pez Cebra , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Ratones , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacología , Pez Cebra/metabolismo
6.
Biochem J ; 477(22): 4327-4342, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33242335

RESUMEN

Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, ß, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2ß), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.


Asunto(s)
Plaquetas/enzimología , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Trombosis/enzimología , Trombosis/terapia , Animales , Plaquetas/patología , Humanos , Isoenzimas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Trombosis/patología
7.
Cancer Metastasis Rev ; 37(2-3): 477-489, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29868934

RESUMEN

Our knowledge on the role of the different lipid messengers produced by phosphoinositide 3-kinases (PI3Ks) in normal and cancer cells as well as in platelets during arterial thrombosis has greatly expanded these last 15 years. PI3Ks are a family of lipid kinases that catalyze the phosphorylation of the D3 position of the inositol ring of phosphoinositides to produce phosphatidylinositol 3-phosphate (PtdIns3P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol-3,4,5 trisphosphate (PtdIns(3,4,5)P3). These D3-phosphoinositides act as intracellular messengers recruiting effector proteins involved in the control of diverse cellular functions including survival, proliferation, migration, membrane trafficking, and cytoskeleton dynamics. The current idea is that the different isoforms of PI3Ks produce specific pools of lipids that regulate in time and space, at the membrane/cytosol interface, the formation of appropriate functional protein complexes. Dysregulation of PI3K-dependent pathways is directly involved in the etiology of several pathologies including cancers where the PI3K/AKT/mTORC1 axis is frequently aberrantly activated. Moreover, PtdIns(3,4,5)P3 production has been shown to play an essential role in platelet functions, particularly in the formation of a stable platelet thrombus at high shear rate. Therefore, PI3Ks are attractive therapeutic targets in the treatment of cancer and arterial thrombosis. In this review, we will discuss the role of the different lipid products of PI3K isoforms in the context of cancer and thrombosis and the development of selective PI3Ks inhibitors in the treatment of these diseases.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias/etiología , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Trombosis/etiología , Trombosis/metabolismo , Animales , Plaquetas/metabolismo , Membrana Celular/metabolismo , Homeostasis , Humanos , Isoenzimas , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Transducción de Señal , Relación Estructura-Actividad
8.
Blood ; 130(18): 2032-2042, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28903944

RESUMEN

To uncover the role of Vps34, the sole class III phosphoinositide 3-kinase (PI3K), in megakaryocytes (MKs) and platelets, we created a mouse model with Vps34 deletion in the MK/platelet lineage (Pf4-Cre/Vps34lox/lox). Deletion of Vps34 in MKs led to the loss of its regulator protein, Vps15, and was associated with microthrombocytopenia and platelet granule abnormalities. Although Vps34 deficiency did not affect MK polyploidisation or proplatelet formation, it dampened MK granule biogenesis and directional migration toward an SDF1α gradient, leading to ectopic platelet release within the bone marrow. In MKs, the level of phosphatidylinositol 3-monophosphate (PI3P) was significantly reduced by Vps34 deletion, resulting in endocytic/trafficking defects. In platelets, the basal level of PI3P was only slightly affected by Vps34 loss, whereas the stimulation-dependent pool of PI3P was significantly decreased. Accordingly, a significant increase in the specific activity of Vps34 lipid kinase was observed after acute platelet stimulation. Similar to Vps34-deficient platelets, ex vivo treatment of wild-type mouse or human platelets with the Vps34-specific inhibitors, SAR405 and VPS34-IN1, induced abnormal secretion and affected thrombus growth at arterial shear rate, indicating a role for Vps34 kinase activity in platelet activation, independent from its role in MKs. In vivo, Vps34 deficiency had no impact on tail bleeding time, but significantly reduced platelet prothrombotic capacity after carotid injury. This study uncovers a dual role for Vps34 as a regulator of platelet production by MKs and as an unexpected regulator of platelet activation and arterial thrombus formation dynamics.


Asunto(s)
Plaquetas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Trombosis/enzimología , Trombosis/patología , Animales , Linaje de la Célula , Movimiento Celular , Gránulos Citoplasmáticos/metabolismo , Espacio Intracelular/metabolismo , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Ratones Endogámicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas , Reproducibilidad de los Resultados , Trombocitopenia/patología
9.
Haematologica ; 104(11): 2292-2299, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30819914

RESUMEN

While efficient at treating B-cell malignancies, Bruton tyrosine kinase (BTK) inhibitors are consistently reported to increase the risk of bleeding. Analyzing platelet aggregation response to collagen in platelet-rich plasma allowed us to identify two groups in the healthy population characterized by low or high sensitivity to ibrutinib in vitro Inhibition of drug efflux pumps induced a shift from ibrutinib low-sensitive platelets to high-sensitive ones. At a clinically relevant dose, acalabrutinib, a second-generation BTK inhibitor, did not affect maximal collagen-induced platelet aggregation in the ibrutinib low-sensitive group but did inhibit aggregation in a small fraction of the ibrutinib high-sensitive group. Consistently, acalabrutinib delayed aggregation, particularly in the ibrutinib high-sensitive group. In chronic lymphocytic leukemia patients, acalabrutinib inhibited maximal platelet aggregation only in the ibrutinib high-sensitive group. Acalabrutinib inhibited collagen-induced tyrosine-753 phosphorylation of phospholipase Cγ2 in both groups, but, in contrast to ibrutinib, did not affect Src-family kinases. Acalabrutinib affected thrombus growth under flow only in the ibrutinib high-sensitive group and potentiated the effect of cyclooxygenase and P2Y12 receptor blockers in both groups. Since the better profile of acalabrutinib was observed mainly in the ibrutinib low-sensitive group, replacement therapy in patients may not systematically reduce the risk of bleeding.


Asunto(s)
Benzamidas/farmacología , Plaquetas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Benzamidas/uso terapéutico , Plaquetas/metabolismo , Plaquetas/ultraestructura , Humanos , Piperidinas , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Pruebas de Función Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Trombosis/metabolismo
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1121-1131, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29902570

RESUMEN

Phosphoinositides are bioactive lipids essential in the regulation of cell signaling as well as cytoskeleton and membrane dynamics. Their metabolism is highly active in blood platelets where they play a critical role during activation, at least through two well identified pathways involving phospholipase C and phosphoinositide 3-kinases (PI3K). Here, using a sensitive high-performance liquid chromatography-mass spectrometry method recently developed, we monitored for the first time the profiling of phosphatidylinositol (PI), PIP, PIP2 and PIP3 molecular species (fatty-acyl profiles) in human and mouse platelets during the course of stimulation by thrombin and collagen-related peptide. Furthermore, using class IA PI3K p110α or p110ß deficient mouse platelets and a pharmacological inhibitor, we show the crucial role of p110ß and the more subtle role of p110α in the production of PIP3 molecular species following stimulation. This comprehensive platelet phosphoinositides profiling provides important resources for future studies and reveals new information on phosphoinositides biology, similarities and differences in mouse and human platelets and unexpected dramatic increase in low-abundance molecular species of PIP2 during stimulation, opening new perspectives in phosphoinositide signaling in platelets.


Asunto(s)
Plaquetas/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Plaquetas/citología , Plaquetas/metabolismo , Proteínas Portadoras/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Activación Plaquetaria/efectos de los fármacos , Cultivo Primario de Células , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Pirimidinonas/farmacología , Trombina/farmacología , ortoaminobenzoatos/farmacología
11.
Mol Cell ; 40(3): 493-500, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21070974

RESUMEN

Phospholipid-enriched membranes such as the plasma membrane can serve as direct regulators of kinase signaling. Pak1 is involved in growth factor signaling at the plasma membrane, and its dysregulation is implicated in cancer. Pak1 adopts an autoinhibited conformation that is relieved upon binding to membrane-bound Rho GTPases Rac1 or Cdc42, but whether lipids also regulate Pak1 in vivo is unknown. We show here that phosphoinositides, particularly PIP(2), potentiate Rho-GTPase-mediated Pak1 activity. A positively charged region of Pak1 binds to phosphoinositide-containing membranes, and this interaction is essential for membrane recruitment and activation of Pak1 in response to extracellular signals. Our results highlight an active role for lipids as allosteric regulators of Pak1 and suggest that Pak1 is a "coincidence detector" whose activation depends on GTPases present in phosphoinositide-rich membranes. These findings expand the role of phosphoinositides in kinase signaling and suggest how altered phosphoinositide metabolism may upregulate Pak1 activity in cancer cells.


Asunto(s)
Activadores de Enzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Quinasas p21 Activadas/metabolismo , Secuencia de Aminoácidos , Animales , Extractos Celulares , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Factor de Crecimiento Derivado de Plaquetas/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Xenopus , Quinasas p21 Activadas/química , Proteína de Unión al GTP rac1/metabolismo
12.
Bioessays ; 36(3): 260-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375703

RESUMEN

Phosphatidylinositol 5-phosphate (PtdIns5P), the least characterized among the three phosphatidylinositol monophosphates, is emerging as a bioactive lipid involved in the control of several cellular functions. Similar to PtdIns3P, it is present in low amounts in mammalian cells, and can be detected at the plasma membrane and endomembranes as well as in the nucleus. Changes in PtdIns5P levels are observed in mammalian cells following specific stimuli or stresses, and in human diseases. Recently, the contribution of several enzymes such as PIKfyve, myotubularins, and type II PtdInsP-kinases to PtdIns5P metabolism has gained a strong experimental support. Here, we provide a picture emerging from recent studies showing how this lipid can be generated and act as a regulator of membrane and cytoskeleton dynamics, and as a modulator of gene expression. We briefly summarize the current methods and tools for studying PtdIns5P, and discuss how PtdIns5P can integrate and coordinate different functions in a spatiotemporal manner.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Lípidos/química , Fosfatos de Fosfatidilinositol/metabolismo , Estrés Fisiológico , Animales , Humanos
13.
Proc Natl Acad Sci U S A ; 109(11): 4116-21, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371566

RESUMEN

Synaptic transmission is mediated by a complex set of molecular events that must be coordinated in time and space. While many proteins that function at the synapse have been identified, the signaling pathways regulating these molecules are poorly understood. Pak5 (p21-activated kinase 5) is a brain-specific isoform of the group II Pak kinases whose substrates and roles within the central nervous system are largely unknown. To gain insight into the physiological roles of Pak5, we engineered a Pak5 mutant to selectively radiolabel its substrates in murine brain extract. Using this approach, we identified two novel Pak5 substrates, Pacsin1 and Synaptojanin1, proteins that directly interact with one another to regulate synaptic vesicle endocytosis and recycling. Pacsin1 and Synaptojanin1 were phosphorylated by Pak5 and the other group II Paks in vitro, and Pak5 phosphorylation promoted Pacsin1-Synaptojanin1 binding both in vitro and in vivo. These results implicate Pak5 in Pacsin1- and Synaptojanin1-mediated synaptic vesicle trafficking and may partially account for the cognitive and behavioral deficits observed in group II Pak-deficient mice.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Vesículas Sinápticas/enzimología , Quinasas p21 Activadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Transporte Biológico , Encéfalo/enzimología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Biológicos , Fosforilación , Unión Proteica , Especificidad por Sustrato
14.
Adv Biol Regul ; 91: 100992, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37793962

RESUMEN

Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.


Asunto(s)
Plaquetas , Trombosis , Animales , Ratones , Humanos , Plaquetas/patología , Fosfatidilinositoles/metabolismo , Inflamación , Trombosis/metabolismo , Inositol/metabolismo
15.
Biomolecules ; 13(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37189331

RESUMEN

Phosphoinositides (PIs) play a crucial role in regulating intracellular signaling, actin cytoskeleton rearrangements, and membrane trafficking by binding to specific domains of effector proteins. They are primarily found in the membrane leaflets facing the cytosol. Our study demonstrates the presence of a pool of phosphatidylinositol 3-monophosphate (PI3P) in the outer leaflet of the plasma membrane of resting human and mouse platelets. This pool of PI3P is accessible to exogenous recombinant myotubularin 3-phosphatase and ABH phospholipase. Mouse platelets with loss of function of class III PI 3-kinase and class II PI 3-kinase α have a decreased level of external PI3P, suggesting a contribution of these kinases to this pool of PI3P. After injection in mouse, or incubation ex vivo in human blood, PI3P-binding proteins decorated the platelet surface as well as α-granules. Upon activation, these platelets were able to secrete the PI3P-binding proteins. These data sheds light on a previously unknown external pool of PI3P in the platelet plasma membrane that recognizes PI3P-binding proteins, leading to their uptake towards α-granules. This study raises questions about the potential function of this external PI3P in the communication of platelets with the extracellular environment, and its possible role in eliminating proteins from the plasma.


Asunto(s)
Plaquetas , Proteínas Portadoras , Ratones , Humanos , Animales , Plaquetas/metabolismo , Membrana Celular/metabolismo , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
16.
Sci Rep ; 12(1): 6255, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428815

RESUMEN

Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.


Asunto(s)
Megacariocitos , Podosomas , Plaquetas/metabolismo , Colágeno Tipo I/metabolismo , Megacariocitos/metabolismo , Trombopoyesis
17.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044298

RESUMEN

Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain-only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like-shaped protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Proteínas de Unión a Ácidos Grasos/genética , Línea Celular Tumoral , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos
18.
Methods Mol Biol ; 2251: 185-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481240

RESUMEN

Phosphoinositides (PIPs) are lipid messengers with different functions according to their localization. After their local production by the action of lipid kinases or phosphatases, PIPs regulate various biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, or gene expression through binding of their phosphorylated inositol head group with different protein domains such as PH, PX, and FYVE. It is well known that PIPs regulate the activity of small GTPases by interacting with and activating Guanyl-nucleotide Exchange Factor (GEF) proteins through specific domains such as the ones mentioned above. However, most of the in vitro assays to assess the activation of GTPases focus on the GTPase only and neglect the fact that co-activators, such as membranes and protein activators, have a significant effect in vivo. Herein, we describe not only the classical protein-lipid overlay and liposome sedimentation methods but also an assay we have developed, which contains three partners: a liposome which composition reproduces the membrane of the target of the GTPase, the recombinant specific DH-(PIP affinity) GEF domain, and the recombinant GTPase to be tested by different PIPs. This assay allows us to clearly quantify the GTPase activation.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Fosfatidilinositoles/análisis , Mapeo de Interacción de Proteínas/métodos , Células 3T3 , Animales , Activadores de GTP Fosfohidrolasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Liposomas/análisis , Liposomas/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositoles/metabolismo , Fosforilación , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Proteínas/química , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo
19.
Methods Mol Biol ; 2251: 39-53, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481230

RESUMEN

Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP2, and PIP3, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.


Asunto(s)
Plaquetas/metabolismo , Fosfatidilinositoles/análisis , Espectrometría de Masas en Tándem/métodos , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Animales , Fenómenos Bioquímicos , Línea Celular , Células Cultivadas , Cromatografía Liquida/métodos , Ácidos Grasos/metabolismo , Inositol/química , Ratones , Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/análisis , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal/fisiología
20.
Methods Mol Biol ; 2251: 177-184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481239

RESUMEN

Following their generation by lipid kinases and phosphatases, phosphoinositides regulate important biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, and gene expression through the interaction of their phosphorylated inositol head group with a variety of protein domains such as PH, PX, and FYVE. Therefore, it is important to determine the specificity of phosphoinositides toward effector proteins to understand their impact on cellular physiology. Several methods have been developed to identify and characterize phosphoinositide effectors, and liposomes-based methods are preferred because the phosphoinositides are incorporated in a membrane, the composition of which can mimic cellular membranes. In this report, we describe the experimental setup for liposome flotation assay and a recently developed method called protein-lipid interaction by fluorescence (PLIF) for the characterization of phosphoinositide-binding specificities of proteins.


Asunto(s)
Liposomas/análisis , Fosfatidilinositoles/análisis , Mapeo de Interacción de Proteínas/métodos , Membrana Celular/metabolismo , Humanos , Liposomas/metabolismo , Fosfatidilinositoles/metabolismo , Fosforilación , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Proteínas/química , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA