Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686460

RESUMEN

Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.


Asunto(s)
Characiformes , Animales , ADN Satélite/genética , Cromosomas Sexuales/genética , Aberraciones Cromosómicas , Cariotipificación
2.
Genes (Basel) ; 14(1)2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36672835

RESUMEN

Satellite DNAs (satDNAs) are tandemly repeated sequences that are usually located on the heterochromatin, and the entire collection of satDNAs within a genome is called satellitome. Primarily, these sequences are not under selective pressure and evolve by concerted evolution, resulting in elevated rates of divergence between the satDNA profiles of reproductive isolated species/populations. Here, we characterized two additional satellitomes of Characiformes fish (Colossoma macropomum and Piaractus mesopotamicus) that diverged approximately 30 million years ago, while still retaining conserved karyotype features. The results we obtained indicated that several satDNAs (50% of satellite sequences in P. mesopotamicus and 43% in C. macropomum) show levels of conservation between the analyzed species, in the nucleotide and chromosomal levels. We propose that long-life cycles and few genomic changes could slow down rates of satDNA differentiation.


Asunto(s)
Characiformes , ADN Satélite , Animales , ADN Satélite/genética , Characiformes/genética , Genómica , Secuencias Repetitivas de Ácidos Nucleicos , Cariotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA