Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 210(1): 50-60, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351696

RESUMEN

Streptococcus pneumoniae persists as a leading cause of bacterial pneumonia despite the widespread use of polysaccharide-based vaccines. The limited serotype coverage of current vaccines has led to increased incidence of nonvaccine serotypes, as well as an increase in antibiotic resistance among these serotypes. Pneumococcal infection often follows a primary viral infection such as influenza virus, which hinders host defense and results in bacterial spread to the lungs. We previously isolated human monoclonal Abs (mAbs) against the conserved surface Ag pneumococcal histidine triad protein D (PhtD), and we demonstrated that mAbs to this Ag are protective against lethal pneumococcal challenge prophylactically and therapeutically. In this study, we elucidated the mechanism of protection of a protective anti-pneumococcal human mAb, PhtD3, which is mediated by the presence of complement and macrophages in a mouse model of pneumococcal infection. Treatment with mAb PhtD3 reduced blood and lung bacterial burden in mice, and mAb PhtD3 is able to bind to bacteria in the presence of the capsular polysaccharide, indicating exposure of surface PhtD on encapsulated bacteria. In a mouse model of secondary pneumococcal infection, protection mediated by mAb PhtD3 and another mAb targeting a different epitope, PhtD7, was reduced; however, robust protection was restored by combining mAb PhtD3 with mAb PhtD7, indicating a synergistic effect. Overall, these studies provide new insights into anti-pneumococcal mAb protection and demonstrate, to our knowledge, for the first time, that mAbs to pneumococcal surface proteins can protect against secondary pneumococcal infection in the mouse model.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Animales , Ratones , Anticuerpos Monoclonales , Epítopos , Pulmón , Vacunas Neumococicas , Anticuerpos Antibacterianos , Proteínas Bacterianas
2.
Infection ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919621

RESUMEN

PURPOSE: Streptococcus pneumoniae (Spn) is a major cause of child death. We investigated the epidemiology of S. pneumoniae in a pediatric fever clinic and explored the genomics basis of the limited vaccine response of serotype 14 strains worldwide. METHODS: Febrile disease and pneumonia were diagnosed following criteria from the WHO at the end of 2019 at a tertiary children's hospital. Spn was isolated by culture from nasopharyngeal (NP) swabs. The density was determined by lytA-base qPCR. Isolates were serotyped by Quellung and underwent antimicrobial susceptibility testing. Whole-genome sequencing was employed for molecular serotyping, MLST, antibiotic gene determination, SNP calling, recombination prediction, and phylogenetic analysis. RESULTS: The presence of pneumococcus in the nasopharynx (87.5%, 7/8, p = 0.0227) and a high carriage (100%, 7/7, p = 0.0123) were significantly associated with pneumonia development. Living with siblings (73.7%, 14/19, p = 0.0125) and non-vaccination (56.0%, 28/50, p = 0.0377) contributed significantly to the Spn carriage. Serotype 14 was the most prevalent strain (16.67%, 5/30). The genome analysis of 1497 serotype 14 strains indicated S14/ST876 strains were only prevalent in China, presented limited vaccine responses with higher recombination activities within its cps locus, and unique variation patterns in the genes wzg and lrp. CONCLUSION: With the lifting of the one-child policy, it will be crucial for families with multiple children to get PCV vaccinations in China. Due to the highly variant cps locus and distinctive variation patterns in capsule shedding and binding proteins genes, the prevalent S14/ST876 strains have shown poor response to current vaccines. It is necessary to continue monitoring the molecular epidemiology of this vaccine escape clone.

3.
Infect Immun ; 90(12): e0047122, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36409115

RESUMEN

Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 µM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.


Asunto(s)
Hemo , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Hemo/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Oxihemoglobinas/metabolismo , Hemoglobinas/metabolismo , Streptococcus/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Catálisis
4.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33397818

RESUMEN

Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Hemoglobinas/metabolismo , Interacciones Huésped-Patógeno , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Células Sanguíneas/metabolismo , Humanos , Infecciones Neumocócicas/sangre , Infecciones Neumocócicas/metabolismo , Streptococcus pneumoniae/patogenicidad
5.
Infect Immun ; 89(12): e0046321, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34543118

RESUMEN

Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.


Asunto(s)
Ácido Desoxicólico/farmacología , Interacciones Huésped-Patógeno , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Animales , Ácidos y Sales Biliares/metabolismo , Ácido Desoxicólico/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Farmacorresistencia Bacteriana , Humanos , Ratones , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , Nasofaringe/microbiología , Infecciones Neumocócicas/metabolismo , Streptococcus pneumoniae/genética
6.
Microb Pathog ; 157: 104994, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34044054

RESUMEN

Escherichia coli strains, including diarrheagenic E. coli (DEC), are among the most important causes of childhood diarrhea in developing countries. Since these strains also colonize healthy children, additional factors leading to diarrhea remains to be discovered. We therefore conducted a comprehensive study to investigate if supplementary virulence genes (SVG) carried by DEC strains and non-DEC strains, contribute to diarrhea in Mexican children. E. coli strains were isolated from n = 317 children between 6 and 12 years, n = 114 with diarrhea and n = 203 asymptomatic children from Northwestern Mexico, PCR was used to identify SVG, then virulence score and cytotoxic assay in HT-29 cells were performed to evaluate virulence of E. coli strains. DEC prevalence was 18.6% and its presence was significantly associated with diarrhea cases. aEPEC, tEAEC, ETEC, DAEC, aEAEC, tEPEC, and EIEC pathotypes were identified. aEPEC strains were significantly associated with asymptomatic children, whereas ETEC was only identified in children with diarrhea. E. coli strains carrying colonization-related SVG and/or proteolysis-related SVG were significantly associated with diarrhea. DEC strains were associated to diarrhea if strains carried SVG ehaC, kps, nleB, and/or espC. Virulence score was significantly higher in E. coli from diarrhea cases than asymptomatic. In addition, DEC strains carrying SVG+ were more virulent, followed by non-DEC SVG+ strains, and correlated with the cytotoxicity assay. Nearly 50% of DEC strains were MDR, and ~10% were XDR. In conclusion the findings of this work provide evidence that the presence of E. coli strains (regardless if strains are DEC or non-DEC) with SVG were associated with diarrhea in Mexican children.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Niño , Diarrea/epidemiología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Humanos , México/epidemiología , Virulencia
7.
Anaerobe ; 66: 102287, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33130105

RESUMEN

Clostridium perfringens strains cause a wide variety of human and animal disease, including gas gangrene or myonecrosis. Production of toxins required for myonecrosis, PFO and CPA, is regulated by the C. perfringens Agr-like (CpAL) system via the VirSR two-component system. Myonecrosis begins at the site of infection from where bacteria migrate deep into the host tissue likely using a previously described gliding motility phenotype. We therefore assessed whether gliding motility was under the control of the CpAL/VirSR regulon. The migration rate of myonecrosis-causing C. perfringens strain 13 (S13) was investigated during a 96 h period, including an adaptation phase with bacterial migration (∼1.4 mm/day) followed by a gliding phase allowing bacteria faster migration (∼8.6 mm/day). Gliding required both an intact CpAL system, and signaling through VirSR. Mutants lacking ΔagrB, or ΔvirR, were impaired for onward gliding while a complemented strain S13ΔagrB/pTS1303 had the gliding phenotype restored. Gene expression studies revealed upregulated transcription of pili genes (pilA1, pilA2 and pilT) whose encoded proteins were previously found to be required for gliding motility and CpAL/VirSR-regulated pfoA and cpa toxin genes. Compared to S13, transcription of cpa and pfoA significantly decreased in S13ΔagrB, or S13ΔvirR, strains but not that of pili genes. Further experiments demonstrated that mutants S13ΔpfoA and S13Δcpa migrated at the same rate as S13 wt. We demonstrated that CpAL/VirSR regulates C. perfringens gliding motility and that gliding bacteria have an increased transcription of toxin genes involved in myonecrosis.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas/genética , Proteínas de Unión al Calcio/genética , Clostridium perfringens/genética , Clostridium perfringens/fisiología , Gangrena Gaseosa/microbiología , Proteínas Hemolisinas/genética , Fosfolipasas de Tipo C/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/metabolismo , Movimiento , Percepción de Quorum , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Regulación hacia Arriba , Virulencia
8.
J Bacteriol ; 201(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31405914

RESUMEN

Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 µM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Streptococcus pneumoniae/metabolismo , Nasofaringe/metabolismo , Infecciones Estafilocócicas/microbiología
9.
Emerg Infect Dis ; 25(11): 2040-2047, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625844

RESUMEN

Increased nasopharyngeal pneumococcal (Streptococcus pneumoniae) colonization density has been associated with invasive pneumococcal disease, but factors that increase pneumococcal density are poorly understood. We evaluated pneumococcal densities in nasopharyngeal samples from asymptomatic young children from Peru and their association with subsequent acute respiratory illness (ARI). Total pneumococcal densities (encompassing all present serotypes) during asymptomatic periods were significantly higher when a respiratory virus was detected versus when no virus was detected (p<0.001). In adjusted analyses, increased pneumococcal density was significantly associated with the risk for a subsequent ARI (p<0.001), whereas asymptomatic viral detection alone was associated with lower risk for subsequent ARI. These findings suggest that interactions between viruses and pneumococci in the nasopharynx during asymptomatic periods might have a role in onset of subsequent ARI. The mechanisms for these interactions, along with other potentially associated host and environmental factors, and their role in ARI pathogenesis and pneumococcal transmission require further elucidation.


Asunto(s)
Enfermedades Asintomáticas , Coinfección , Nasofaringe/microbiología , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/microbiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Streptococcus pneumoniae , Niño , Preescolar , Femenino , Humanos , Masculino , Infecciones Neumocócicas/prevención & control , Vigilancia en Salud Pública , Medición de Riesgo , Factores de Riesgo
10.
Am J Epidemiol ; 188(12): 2110-2119, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31509184

RESUMEN

Culture-based methods for detecting Streptococcus pneumoniae in the nasopharynx lack sensitivity. In this study, we aimed to compare the performance of culture and molecular methods in detecting pneumococcus in the nasopharynx of healthy individuals and to evaluate the associations of age and colonization density with detection. Between 2010 and 2012, nasopharyngeal specimens were collected from healthy individuals living on Navajo Nation and White Mountain Apache Tribal lands in the United States. Pneumococci were detected by means of broth-enrichment culture and autolysin-encoding gene (lytA) quantitative polymerase chain reaction (qPCR). Among 982 persons evaluated (median age, 18.7 years; 47% male), 35% were culture-positive and an additional 27% were qPCR-positive. Agreement between culture and qPCR was 70.9% but was higher among children (age <18 years) (75.9%-84.4%) than among adults (age ≥18 years) (61.0%-74.6%). The mean density of colonization was lower for culture-negative samples (3.14 log10 copies/mL) than for culture-positive samples (5.02 log10 copies/mL), overall and for all age groups. The percent culture-positive increased with increasing density, exceeding 80% at densities of ≥10,000 copies/mL. Mean colonization density decreased with age. Use of qPCR improved detection of pneumococcus in the nasopharynx of healthy individuals. This finding was most notable among adults, probably because of improved detection of low-density colonization.


Asunto(s)
Técnicas de Cultivo , Nasofaringe/microbiología , Streptococcus pneumoniae/aislamiento & purificación , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
11.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576759

RESUMEN

Streptococcus pneumoniae is a main cause of child mortality worldwide, but strains also asymptomatically colonize the upper airways of most children and form biofilms. Recent studies have demonstrated that ∼50% of colonized children carry at least two different serotypes (i.e., strains) in the nasopharynx; however, studies of how strains coexist are limited. In this work, we investigated the physiological, genetic, and ecological requirements for the relative distribution of densities, and spatial localization, of pneumococcal strains within biofilm consortia. Biofilm consortia were prepared with vaccine type strains (i.e., serotype 6B [S6B], S19F, or S23F) and strain TIGR4 (S4). Experiments first revealed that the relative densities of S6B and S23F were similar in biofilm consortia. The density of S19F strains, however, was reduced to ∼10% in biofilm consortia, including either S6B, S23F, or TIGR4, in comparison to S19F monostrain biofilms. Reduction of S19F density within biofilm consortia was also observed in a simulated nasopharyngeal environment. Reduction of relative density was not related to growth rates, since the Malthusian parameter demonstrated similar rates of change of density for most strains. To investigate whether quorum sensing (QS) regulates relative densities in biofilm consortia, two different mutants were prepared: a TIGR4ΔluxS mutant and a TIGR4ΔcomC mutant. The density of S19F strains, however, was similarly reduced when consortia included TIGR4, TIGR4ΔluxS, or TIGR4ΔcomC Moreover, production of a different competence-stimulating peptide (CSP), CSP1 or CSP2, was not a factor that affected dominance. Finally, a mathematical model, confocal experiments, and experiments using Transwell devices demonstrated physical contact-mediated control of pneumococcal density within biofilm consortia.IMPORTANCEStreptococcus pneumoniae kills nearly half a million children every year, but it also produces nasopharyngeal biofilm consortia in a proportion of asymptomatic children, and these biofilms often contain two strains (i.e., serotypes). In our study, we investigated how strains coexist within pneumococcal consortia produced by vaccine serotypes S4, S6B, S19F, and S23F. Whereas S6B and S23F shared the biofilm consortium, our studies demonstrated reduction of the relative density of S19F strains, to ∼10% of what it would otherwise be if alone, in consortial biofilms formed with S4, S6B, or S23F. This dominance was not related to increased fitness when competing for nutrients, nor was it regulated by quorum-sensing LuxS/AI-2 or Com systems. It was demonstrated, however, to be enhanced by physical contact rather than by a product(s) secreted into the supernatant, as would naturally occur in the semidry nasopharyngeal environment. Competitive interactions within pneumococcal biofilm consortia regulate nasopharyngeal density, a risk factor for pneumococcal disease.


Asunto(s)
Biopelículas , Enfermedades Nasofaríngeas/microbiología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/fisiología , Portador Sano/microbiología , Humanos , Percepción de Quorum , Serogrupo , Streptococcus pneumoniae/genética
14.
Mol Microbiol ; 97(1): 151-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25846124

RESUMEN

The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes.


Asunto(s)
Competencia de la Transformación por ADN/genética , Eliminación de Gen , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Animales , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Ratones , Mutación , Neumonía Neumocócica/microbiología , Regulón , Estreptolisinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética
15.
J Clin Microbiol ; 54(7): 1842-1850, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27170020

RESUMEN

Streptococcus pneumoniae is both a commensal and a major pathogen that causes invasive disease in people of all ages. The introduction of serotype-specific pneumococcal vaccines has reduced the burden of disease but has also led to replacement with new strains; thus, serotyping remains important for vaccine-related disease surveillance. Conventional serotyping methods are laborious and expensive. We developed an easy-to-perform genotypic TaqMan array card (TAC) to identify S. pneumoniae strains, including lytA-based sequences, and 53 sequence-specific PCRs to identify 74 serotypes/serogroups covering all current vaccine types as well as prevalent nonvaccine types. The TAC method was evaluated on 146 clinical S. pneumoniae isolates and 13 nonpneumococcal species that naturally inhabit the upper respiratory tract and yielded 97% (142/146) sensitivity and 100% (13/13) specificity versus results of standard Quellung serotyping. The calculated limit of detection was 20 to 200 fg (∼8 to 84 genome equivalents) per reaction. On 23 blinded nasopharyngeal specimens that were pneumococcus culture positive, the TAC pan-pneumococcus lytA assay was positive in 21 (91% sensitivity versus culture). On TAC lytA-positive specimens, a serotype result was obtained on 86%, and the result was 95% accurate versus the subsequent culture's Quellung result. TAC also detected mixed serotypes in two specimens where Quellung detected only the predominant serotype. This TAC method yields fast and comprehensive serotyping compared to the standard method and may be useful on direct specimens.


Asunto(s)
Portador Sano/microbiología , Tipificación Molecular/métodos , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Serotipificación/métodos , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/genética , Niño , Preescolar , Humanos , Análisis por Micromatrices/métodos , Sensibilidad y Especificidad , Streptococcus pneumoniae/aislamiento & purificación
16.
Anaerobe ; 39: 143-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27063897

RESUMEN

Clostridium perfringens type C strains produce severe disease in humans and animals including enterotoxaemia and hemorrhagic diarrhea. Type C disease is mediated by production of toxins that damage the site of infection inducing loss of bloody fluids. Production of type C toxins, such as CPA, PFO, and, CPB is regulated by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. The CpAL system is also required to recapitulate, in vivo, intestinal signs of C. perfringens type C-induced disease, including hemorrhagic diarrhea and accumulation of fluids. The intestinal epithelium forms a physical barrier, made up of a series of intercellular junctions including tight junctions (TJs), adherens junctions (AJs) and desmosomes (DMs). This selective barrier regulates important physiological processes, including paracellular movement of ions and solutes, which, if altered, results in loss of fluids into the intestinal lumen. In this work, the effects of C. perfringens infection on the barrier function of intestinal epithelial cells was evaluated by measuring trans-epithelial resistance (TEER). Our studies demonstrate that infection of human enterocytes with C. perfringens type C strain CN3685 induced a significant drop on TEER. Changes in TEER were mediated by the CpAL system as a CN3685ΔagrB mutant did not induce such a drop. Physical contact between bacteria and enterocytes produced more pronounced changes in TEER and this phenomenon appeared also to be mediated by the CpAL system. Finally, immunofluorescence studies demonstrate that C. perfringens type C infection redistribute TJs protein occludin, and Claudin-3, and DMs protein desmoglein-2, but did not affect the AJs protein E-cadherin.


Asunto(s)
Clostridium perfringens/metabolismo , Enterocitos/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Percepción de Quorum , Uniones Estrechas/metabolismo , Animales , Proteínas Bacterianas , Células CACO-2 , Línea Celular Tumoral , Claudina-3/genética , Claudina-3/metabolismo , Clostridium perfringens/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Impedancia Eléctrica , Enterocitos/microbiología , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Ocludina/genética , Ocludina/metabolismo , Transporte de Proteínas , Uniones Estrechas/microbiología
17.
J Infect Dis ; 211(6): 988-94, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25293366

RESUMEN

BACKGROUND: A clinical trial of mass azithromycin distributions for trachoma created a convenient experiment to test the hypothesis that antibiotic use selects for clonal expansion of preexisting resistant bacterial strains. METHODS: Twelve communities in Ethiopia received mass azithromycin distributions every 3 months for 1 year. A random sample of 10 children aged 0-9 years from each community was monitored by means of nasopharyngeal swab sampling before mass azithromycin distribution and after 4 mass treatments. Swab specimens were tested for Streptococcus pneumoniae, and isolates underwent multilocus sequence typing. RESULTS: Of 82 pneumococcal isolates identified before treatment, 4 (5%) exhibited azithromycin resistance, representing 3 different sequence types (STs): 177, 6449, and 6494. The proportion of isolates that were classified as one of these 3 STs and were resistant to azithromycin increased after 4 mass azithromycin treatments (14 of 96 isolates [15%]; P = .04). Using a classification index, we found evidence for a relationship between ST and macrolide resistance after mass treatments (P < .0001). The diversity of STs-as calculated by the unbiased Simpson index-decreased significantly after mass azithromycin treatment (P = .045). CONCLUSIONS: Resistant clones present before mass azithromycin treatments increased in frequency after treatment, consistent with the theory that antibiotic selection pressure results in clonal expansion of existing resistant strains.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Niño , Preescolar , Farmacorresistencia Bacteriana , Femenino , Genes Bacterianos , Humanos , Lactante , Recién Nacido , Masculino , Tipificación de Secuencias Multilocus , Cavidad Nasal/microbiología , Infecciones Neumocócicas/tratamiento farmacológico , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación
18.
Infect Immun ; 83(6): 2430-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824838

RESUMEN

Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms.


Asunto(s)
Toxinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Clostridium perfringens/citología , Clostridium perfringens/fisiología , Proteínas Hemolisinas/metabolismo , Percepción de Quorum/fisiología , Proteínas Bacterianas , Toxinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hemolisinas/genética
19.
Infect Immun ; 82(6): 2255-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24643541

RESUMEN

EspC is a non-locus of enterocyte effacement (LEE)-encoded autotransporter produced by enteropathogenic Escherichia coli (EPEC) that is secreted to the extracellular milieu by a type V secretion system and then translocated into epithelial cells by the type III secretion system. Here, we show that this efficient EspC delivery into the cell leads to a cytopathic effect characterized by cell rounding and cell detachment. Thus, EspC is the main protein involved in epithelial cell cytotoxicity detected during EPEC adhesion and pedestal formation assays. The cell detachment phenotype is triggered by cytoskeletal and focal adhesion disruption. EspC-producing EPEC is able to cleave fodrin, paxillin, and focal adhesion kinase (FAK), but these effects are not observed when cells are infected with an espC isogenic mutant. Recovery of these phenotypes by complementing the mutant with the espC gene but not with the espC gene mutated in the serine protease motif highlights the role of the protease activity of EspC in the cell detachment phenotype. In vitro assays using purified proteins showed that EspC, but not EspC with an S256I substitution [EspCS256I], directly cleaves these cytoskeletal and focal adhesion proteins. Kinetics of protein degradation indicated that EspC-producing EPEC first cleaves fodrin (within the 11th and 9th repetitive units at the Q1219 and D938 residues, respectively), and this event sequentially triggers paxillin degradation, FAK dephosphorylation, and FAK degradation. Thus, cytoskeletal and focal adhesion protein cleavage leads to the cell rounding and cell detachment promoted by EspC-producing EPEC.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Portadoras/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Proteínas de Escherichia coli/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas de Microfilamentos/metabolismo , Paxillin/metabolismo , Adhesión Celular , Línea Celular , Células Epiteliales/patología , Infecciones por Escherichia coli/microbiología , Humanos
20.
Clin Infect Dis ; 58(10): 1369-76, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24621951

RESUMEN

BACKGROUND: Animal models suggest that influenza infection favors nasopharyngeal acquisition of pneumococci. We assessed this relationship with influenza and other respiratory viruses in young children. METHODS: A case-control study was nested within a prospective cohort study of acute respiratory illness (ARI) in Andean children <3 years of age (RESPIRA-PERU study). Weekly household visits were made to identify ARI and obtain nasal swabs for viral detection using real-time reverse-transcription polymerase chain reaction. Monthly nasopharyngeal (NP) samples were obtained to assess pneumococcal colonization. We determined whether specific respiratory viral ARI episodes occurring within the interval between NP samples increased the risk of NP acquisition of new pneumococcal serotypes. RESULTS: A total of 729 children contributed 2128 episodes of observation, including 681 pneumococcal acquisition episodes (new serotype, not detected in prior sample), 1029 nonacquisition episodes (no colonization or persistent colonization with the same serotype as the prior sample), and 418 indeterminate episodes. The risk of pneumococcal acquisition increased following influenza-ARI (adjusted odds ratio [AOR], 2.19; 95% confidence interval [CI], 1.02-4.69) and parainfluenza-ARI (AOR, 1.86; 95% CI, 1.15-3.01), when compared with episodes without ARI. Other viral infections (respiratory syncytial virus, human metapneumovirus, human rhinovirus, and adenovirus) were not associated with acquisition. CONCLUSIONS: Influenza and parainfluenza ARIs appeared to facilitate pneumococcal acquisition among young children. As acquisition increases the risk of pneumococcal diseases, these observations are pivotal in our attempts to prevent pneumococcal disease.


Asunto(s)
Gripe Humana/virología , Nasofaringe/microbiología , Orthomyxoviridae/fisiología , Infecciones por Paramyxoviridae/virología , Paramyxoviridae/fisiología , Infecciones del Sistema Respiratorio/virología , Streptococcus pneumoniae/aislamiento & purificación , Estudios de Casos y Controles , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Gripe Humana/microbiología , Masculino , Interacciones Microbianas , Infecciones por Paramyxoviridae/microbiología , Perú , Estudios Prospectivos , Infecciones del Sistema Respiratorio/microbiología , Factores de Riesgo , Serotipificación , Streptococcus pneumoniae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA