Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Haematol ; 182(6): 843-850, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30004110

RESUMEN

Isolated trisomy 8 (+8) is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDS), but its characteristics are poorly reported. We performed a retrospective study of 138 MDS patients with isolated +8, classified or reclassified as MDS (excluding MDS/myeloproliferative neoplasm). Myeloproliferative (MP) features were defined by the repeated presence of one of the following: white blood cell count >10 × 109 /l, myelemia (presence of circulating immature granulocytes with a predominance of more mature forms) >2%, palpable splenomegaly. Fifty-four patients (39·1%) had MP features: 28 at diagnosis, 26 were acquired during evolution. MP forms had more EZH2 (33·3% vs. 12·0% in non-MP, P = 0·047), ASXL1 (66·7% vs. 42·3%, P = 0·048) and STAG2 mutations (77·8% vs. 21·7%, P = 0·006). Median event-free survival (EFS) and overall survival (OS) were 25 and 27 months for patients with MP features at diagnosis, versus 28 (P = 0·15) and 39 months (P = 0·085) for those without MP features, respectively. Among the 57 patients who received hypomethylating agent (HMA), OS was lower in MP cases (13 months vs. 23 months in non-MP cases, P = 0.02). In conclusion, MP features are frequent in MDS with isolated +8. MP forms had more EZH2, ASXL1 and STAG2 mutations, responded poorly to HMA, and tended to have poorer survival than non-MP forms.


Asunto(s)
Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Trisomía/genética , Adulto , Anciano , Antígenos Nucleares/genética , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular , Cromosomas Humanos Par 8/genética , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Humanos , Persona de Mediana Edad , Síndromes Mielodisplásicos/epidemiología , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/mortalidad , Proteínas Represoras/genética , Estudios Retrospectivos , Análisis de Supervivencia
2.
Plant J ; 61(2): 271-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19874542

RESUMEN

Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to MetSO S- and R-diastereomers, respectively. Two MSRB isoforms, MSRB1 and MSRB2, are present in chloroplasts of Arabidopsis thaliana. To assess their physiological role, we characterized Arabidopsis mutants knockout for the expression of MSRB1, MSRB2 or both genes. Measurements of MSR activity in leaf extracts revealed that the two plastidial MSRB enzymes account for the major part of leaf peptide MSR capacity. Under standard conditions of light and temperature, plants lacking one or both plastidial MSRBs do not exhibit any phenotype, regarding growth and development. In contrast, we observed that the concomitant absence of both proteins results in a reduced growth for plants cultivated under high light or low temperature. In contrast, double mutant lines restored for MSRB2 expression display no phenotype. Under environmental constraints, the MetSO level in leaf proteins is higher in plants lacking both plastidial MSRBs than in Wt plants. The absence of plastidial MSRBs is associated with an increased chlorophyll a/b ratio, a reduced content of Lhca1 and Lhcb1 proteins and an impaired photosynthetic performance. Finally, we show that MSRBs are able to use as substrates, oxidized cpSRP43 and cpSRP54, the two main components involved in the targeting of Lhc proteins to the thylakoids. We propose that plastidial MSRBs fulfil an essential function in maintaining vegetative growth of plants during environmental constraints, through a role in the preservation of photosynthetic antennae.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Metionina Sulfóxido Reductasas/metabolismo , Hojas de la Planta/enzimología , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Western Blotting , Clorofila/metabolismo , Genotipo , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Metionina/análogos & derivados , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Mutación , Fenotipo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Especificidad por Sustrato , Temperatura
3.
Trends Plant Sci ; 11(7): 329-34, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16782394

RESUMEN

Thioredoxins are ubiquitous disulfide reductases that regulate the redox status of target proteins. Although plant thioredoxins display a striking diversity not found in other organisms, many of their physiological roles have yet to be determined. Based on recent publications investigating thioredoxin targets and genetically modified plants, thioredoxins appear to play a fundamental role in plant tolerance of oxidative stress. They are involved in oxidative damage avoidance by supplying reducing power to reductases detoxifying lipid hydroperoxides or repairing oxidized proteins. Furthermore, other lines of evidence indicate that thioredoxins could act as regulators of scavenging mechanisms and as components of signalling pathways in the plant antioxidant network.


Asunto(s)
Estrés Oxidativo/fisiología , Plantas/metabolismo , Tiorredoxinas/metabolismo , Antioxidantes/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas/enzimología , Plantas/genética , Especies Reactivas de Oxígeno , Tiorredoxinas/genética
4.
FEBS Lett ; 581(23): 4371-6, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17761174

RESUMEN

Methionine sulfoxide reductases (MSRs) A and B reduce methionine sulfoxide (MetSO) S- and R-diastereomers, respectively, back to Met using electrons generally supplied by thioredoxin. The physiological reductants for MSRBs remain unknown in plants, which display a remarkable variety of thioredoxins (Trxs) and glutaredoxins (Grxs). Using recombinant proteins, we show that Arabidopsis plastidial MSRB1 and MSRB2, which differ regarding the number of presumed redox-active cysteines, possess specific reductants. Most simple-module Trxs, especially Trx m1 and Trx y2, are preferential and efficient electron donors towards MSRB2, while the double-module CDSP32 Trx and Grxs can reduce only MSRB1. This study identifies novel types of reductants, related to Grxs and peculiar Trxs, for MSRB proteins displaying only one redox-active cysteine.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Oxidorreductasas/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/genética , Cisteína/metabolismo , Transporte de Electrón , Glutarredoxinas/genética , Metionina Sulfóxido Reductasas , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas/genética , Plastidios/enzimología , Plastidios/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tiorredoxinas/genética , Factores de Tiempo
5.
Photosynth Res ; 89(2-3): 247-62, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17031545

RESUMEN

Methionine oxidation to methionine sulfoxide (MetSo), which results in modification of activity and conformation for many proteins, is reversed by an enzyme present in most organisms and termed as methionine sulfoxide reductase (MSR). On the basis of substrate stereospecificity, two types of MSR, A and B, that do not share any sequence similarity, have been identified. In the present review, we first compare the multigenic MSR families in the three plant species for which the genome is fully sequenced: Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa. The MSR gene content is larger in A. thaliana (five MSRAs and nine MSRBs) compared to P. trichocarpa (five MSRAs and four MSRBs) and O. sativa (four MSRAs and three MSRBs). A complete classification based on gene structure, sequence identity, position of conserved reactive cysteines and predicted subcellular localization is proposed. On the basis of in silico and experimental data originating mainly from Arabidopsis, we report that some MSR genes display organ-specific expression patterns and that those encoding plastidic MSRs are highly expressed in photosynthetic organs. We also show that the expression of numerous MSR genes is enhanced by environmental conditions known to generate oxidative stress. Thioredoxins (TRXs) constitute very likely physiological electron donors to plant MSR proteins for the catalysis of MetSO reduction, but the specificity between the numerous TRXs and methionine sulfoxide reductases (MSRs) present in plants remains to be investigated. The essential role of plant MSRs in protection against oxidative damage has been recently demonstrated on transgenic Arabidopsis plants modified in the content of cytosolic or plastidic MSRA.


Asunto(s)
Familia de Multigenes , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Plantas/enzimología , Plantas/genética , Metionina Sulfóxido Reductasas
6.
Plant Physiol ; 138(2): 909-22, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15923321

RESUMEN

Two types of methionine (Met) sulfoxide reductases (Msr) catalyze the reduction of Met sulfoxide (MetSO) back to Met. MsrA, well characterized in plants, exhibits an activity restricted to the Met-S-SO-enantiomer. Recently, a new type of Msr enzyme, called MsrB, has been identified in various organisms and shown to catalytically reduce the R-enantiomer of MetSO. In plants, very little information is available about MsrB and we focused our attention on Arabidopsis (Arabidopsis thaliana) MsrB proteins. Searching Arabidopsis genome databases, we have identified nine open reading frames encoding proteins closely related to MsrB proteins from bacteria and animal cells. We then analyzed the activity and abundance of the two chloroplastic MsrB proteins, MsrB1 and MsrB2. Both enzymes exhibit an absolute R-stereospecificity for MetSO and a higher catalytic efficiency when using protein-bound MetSO as a substrate than when using free MetSO. Interestingly, we observed that MsrB2 is reduced by thioredoxin, whereas MsrB1 is not. This feature of MsrB1 could result from the lack of the catalytical cysteine (Cys) corresponding to Cys-63 in Escherichia coli MsrB that is involved in the regeneration of Cys-117 through the formation of an intramolecular disulfide bridge followed by thioredoxin reduction. We investigated the abundance of plastidial MsrA and B in response to abiotic (water stress, photooxidative treatment) and biotic (rust fungus) stresses and we observed that MsrA and B protein levels increase in response to the photooxidative treatment. The possible role of plastidic MsrB in the tolerance to oxidative damage is discussed.


Asunto(s)
Arabidopsis/enzimología , Oxidorreductasas/metabolismo , Plastidios/enzimología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inducción Enzimática , Regulación de la Expresión Génica de las Plantas , Metionina Sulfóxido Reductasas , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Estrés Oxidativo , Oxidorreductasas/genética , Hojas de la Planta/metabolismo , Plastidios/genética , Proteínas Recombinantes , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA