RESUMEN
Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause both endemic and pandemic acute viral gastroenteritis. Previously we reported that many strains of HuNoV require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. Of note, BA was not essential for replication of a pandemic-causing GII.4 HuNoV strain. Using the BA-requiring strain GII.3, we found that the hydrophobic BA GCDCA induces multiple cellular responses that promote replication in jejunal enteroids. Further, we found that chemical inhibition of the G-protein coupled receptor, sphingosine-1- phosphate receptor 2 (S1PR2), by JTE-013 reduced both GII.3 infection in a dose- dependent manner and cellular uptake in enteroids. Herein, we sought to determine if S1PR2 is required by other BA-dependent HuNoV strains and BA-independent GII.4, and if S1PR2 is required for BA-dependent HuNoV infection in other segments of the small intestine. We found JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not the GII.4 Sydney variant (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. GII.3 infection of duodenal, jejunal and ileal lines derived from the same individual was also reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoV exploit the activation of S1PR2 by BA to infect the entire small intestine. Importance: Human noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA- independent strain, all required S1PR2 for infection. Additionally, BA-dependent infection required S1PR2 in multiple segments of the small intestine. Together these results indicate S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.