Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biomed Inform ; 158: 104723, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39299565

RESUMEN

OBJECTIVE: Disease severity scores, or endpoints, are routinely measured during Randomized Controlled Trials (RCTs) to closely monitor the effect of treatment. In real-world clinical practice, although a larger set of patients is observed, the specific RCT endpoints are often not captured, which makes it hard to utilize real-world data (RWD) to evaluate drug efficacy in larger populations. METHODS: To overcome this challenge, we developed an ensemble technique which learns proxy models of disease endpoints in RWD. Using a multi-stage learning framework applied to RCT data, we first identify features considered significant drivers of disease available within RWD. To create endpoint proxy models, we use Explainable Boosting Machines (EBMs) which allow for both end-user interpretability and modeling of non-linear relationships. RESULTS: We demonstrate our approach on two diseases, rheumatoid arthritis (RA) and atopic dermatitis (AD). As we show, our combined feature selection and prediction method achieves good results for both disease areas, improving upon prior methods proposed for predictive disease severity scoring. CONCLUSION: Having disease severity over time for a patient is important to further disease understanding and management. Our results open the door to more use cases in the space of RA and AD such as treatment effect estimates or prognostic scoring on RWD. Our framework may be extended beyond RA and AD to other diseases where the severity score is not well measured in electronic health records.


Asunto(s)
Artritis Reumatoide , Dermatitis Atópica , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Artritis Reumatoide/tratamiento farmacológico , Dermatitis Atópica/tratamiento farmacológico , Índice de Severidad de la Enfermedad , Determinación de Punto Final , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA