RESUMEN
Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.
Asunto(s)
Epilepsia Refractaria , Mutación con Ganancia de Función , Canales de Potasio KCNQ , Adolescente , Niño , Epilepsia Refractaria/genética , Femenino , Humanos , Canales de Potasio KCNQ/genética , Masculino , Mutación , Fenotipo , ProbabilidadRESUMEN
INTRODUCTION: Our objective was to evaluate the outcome of fetuses with first- and second-trimester fetal cytomegalovirus infection (CMVi) according to prenatal imaging patterns, especially fetuses presenting with mild imaging features (MF), being currently of uncertain prognosis. MATERIAL AND METHODS: In a retrospective study of 415 suspected CMVi cases, 59 cases were confirmed. Among prenatal imaging features, microcephaly, cortical disorder, and cerebellar hypoplasia as well as severe IUGR and fetal hydrops were considered as severe imaging features (SF). Other imaging features were considered as MF. Postnatal outcome was classified as "normal outcome," "mild sequelae" characterized mainly by sensorineural disorder (SND) and "severe sequelae" characterized by cognitive impairment. RESULTS: Only first-trimester (T1) and second-trimester (T2) CMVi cases were included in our study (n = 49) since all third-trimester cases (n = 10) had normal imaging and outcome. Sixteen fetuses had normal prenatal imaging and normal outcome, except one showing SND. Abnormal ultrasound findings were present in 33 fetuses, including SF noted in 16 fetuses, related exclusively to first-trimester CMVi. Termination of pregnancy was performed in 18 cases. Twelve first-trimester infected fetuses presented SF, whereas 6 fetuses (T1: n = 5, T2: n = 1) presented isolated MF. Four fetal deaths were encountered. Live-born babies with abnormal imaging included 10 fetuses with MF and one with SF. Among the 10 live babies with isolated MF, SND was encountered in 5 cases, whereas 5 children demonstrated normal outcome. Overall, 50% of our babies showing MF suffered from SND. No case of cognitive disorders was reported in babies showing only MF. CONCLUSION: SF were encountered only in first-trimester CMVi and should be distinguished from MF. Among our 10 live babies with prenatal MF following first- or second-trimester infection, 50% showed SND, whereas none presented severe sequelae. In 16 fetuses displaying normal fetal imaging, SND was encountered in one first-trimester case (6%).
Asunto(s)
Infecciones por Citomegalovirus , Enfermedades Fetales , Complicaciones Infecciosas del Embarazo , Embarazo , Lactante , Femenino , Niño , Humanos , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos , Infecciones por Citomegalovirus/diagnóstico por imagen , Infecciones por Citomegalovirus/congénito , Diagnóstico Prenatal/métodos , Complicaciones Infecciosas del Embarazo/diagnóstico por imagen , Enfermedades Fetales/diagnóstico por imagenRESUMEN
PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.
Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Convulsiones Febriles , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
OBJECTIVE: γ-Aminobutyric acid (GABA)A -receptor subunit variants have recently been associated with neurodevelopmental disorders and/or epilepsy. The phenotype linked with each gene is becoming better known. Because of the common molecular structure and physiological role of these phenotypes, it seemed interesting to describe a putative phenotype associated with GABAA -receptor-related disorders as a whole and seek possible genotype-phenotype correlations. METHODS: We collected clinical, electrophysiological, therapeutic, and molecular data from patients with GABAA -receptor subunit variants (GABRA1, GABRB2, GABRB3, and GABRG2) through a national French collaboration using the EPIGENE network and compared these data to the one already described in the literature. RESULTS: We gathered the reported patients in three epileptic phenotypes: 15 patients with fever-related epilepsy (40%), 11 with early developmental epileptic encephalopathy (30%), 10 with generalized epilepsy spectrum (27%), and 1 patient without seizures (3%). We did not find a specific phenotype for any gene, but we showed that the location of variants on the transmembrane (TM) segment was associated with a more severe phenotype, irrespective of the GABAA -receptor subunit gene, whereas N-terminal variants seemed to be related to milder phenotypes. SIGNIFICANCE: GABAA -receptor subunit variants are associated with highly variable phenotypes despite their molecular and physiological proximity. None of the genes described here was associated with a specific phenotype. On the other hand, it appears that the location of the variant on the protein may be a marker of severity. Variant location may have important weight in the development of targeted therapeutics.
Asunto(s)
Epilepsia Generalizada , Epilepsia , Estudios de Cohortes , Epilepsia/genética , Estudios de Asociación Genética , Humanos , Mutación , Fenotipo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in â¼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.
Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto JovenRESUMEN
OBJECTIVE: Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. METHODS: We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. RESULTS: The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one-half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one-third of all cases paroxysms of fast activity with electrodecrement. ALG13-related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one-third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. SIGNIFICANCE: X-linked ALG13-related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.
Asunto(s)
Discapacidades del Desarrollo/fisiopatología , Epilepsia Refractaria/fisiopatología , N-Acetilglucosaminiltransferasas/genética , Espasmos Infantiles/fisiopatología , Hormona Adrenocorticotrópica/uso terapéutico , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Discapacidades del Desarrollo/genética , Dieta Cetogénica , Epilepsia Refractaria/genética , Epilepsia Refractaria/terapia , Discinesias/genética , Discinesias/fisiopatología , Electroencefalografía , Síndromes Epilépticos/genética , Síndromes Epilépticos/fisiopatología , Síndromes Epilépticos/terapia , Femenino , Glucocorticoides/uso terapéutico , Hormonas/uso terapéutico , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/fisiopatología , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Fenotipo , Conducta Social , Espasmos Infantiles/genéticaRESUMEN
BACKGROUND: The role of deleterious copy number variations in schizophrenia is well established while data regarding pathogenic variations remain scarce. We report for the first time a case of schizophrenia in a child with a pathogenic mutation of the chromodomain helicase DNA binding protein 2 (CHD2) gene. CASE PRESENTATION: The proband was the second child of unrelated parents. Anxiety and sleep disorders appeared at the age of 10 months. He presented febrile seizures and, at the age of 8, two generalized tonic-clonic seizures. At the age of 10, emotional withdrawal emerged, along with a flat affect, disorganization and paranoid ideation, without seizures. He began to talk and giggle with self. Eventually, the patient presented daily auditory and visual hallucinations. The diagnosis of childhood onset schizophrenia (DSM V) was then evoked. Brain imaging was unremarkable. Wakefulness electroencephalography showed a normal background and some bilateral spike-wave discharges that did not explain the psychosis features. A comparative genomic hybridization array (180 K, Agilent, Santa Clara, CA, USA) revealed an 867-kb 16p13.3 duplication, interpreted as a variant of unknown significance confirmed by a quantitative PCR that also showed its maternal inheritance. Risperidone (1,5 mg per day), led to clinical improvement. At the age of 11, an explosive relapse of epilepsy occurred with daily seizures of various types. The sequencing of a panel for monogenic epileptic disorders and Sanger sequencing revealed a de novo pathogenic heterozygous transition in CHD2 (NM_001271.3: c.4003G > T). CONCLUSIONS: This case underlines that schizophrenia may be, sometimes, underpinned by a Mendelian disease. It addresses the question of systematic genetic investigations in the presence of warning signs such as a childhood onset of the schizophrenia or a resistant epilepsy. It points that, in the absence of pathogenic copy number variation, the investigations should also include a search for pathogenic variations, which means that some of the patients with schizophrenia should benefit from Next Generation Sequencing tools. Last but not least, CHD2 encodes a member of the chromodomain helicase DNA-binding (CHD) family involved in chromatin remodeling. This observation adds schizophrenia to the phenotypic spectrum of chromodomain remodeling disorders, which may lead to innovative therapeutic approaches.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Proteínas de Unión al ADN/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Encéfalo/patología , Niño , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Electroencefalografía , Femenino , Heterocigoto , Humanos , Masculino , Mutación , Fenotipo , Esquizofrenia/fisiopatología , Convulsiones Febriles/genética , Convulsiones Febriles/patologíaRESUMEN
Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five additional families with eight affected individuals through the Matchmaker Exchange initiative by matching autosomal-recessive mutations in AP3B2. Reverse phenotyping of 12 affected individuals from eight families revealed a homogeneous EOEE phenotype characterized by severe developmental delay, poor visual contact with optic atrophy, and postnatal microcephaly. No spasticity, albinism, or hematological symptoms were reported. AP3B2 encodes the neuron-specific subunit of the AP-3 complex. Autosomal-recessive variations of AP3B1, the ubiquitous isoform, cause Hermansky-Pudlak syndrome type 2. The only isoform for the δ subunit of the AP-3 complex is encoded by AP3D1. Autosomal-recessive mutations in AP3D1 cause a severe disorder cumulating the symptoms of the AP3B1 and AP3B2 defects.
Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Epilepsia/complicaciones , Epilepsia/genética , Genes Recesivos/genética , Mutación , Atrofia Óptica/complicaciones , Atrofia Óptica/genética , Edad de Inicio , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/genética , Linaje , SíndromeRESUMEN
PURPOSE: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes. METHODS: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes. RESULTS: We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant. CONCLUSION: Singleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).
Asunto(s)
Ataxia/genética , Ataxia Cerebelosa/genética , Espasmos Infantiles/genética , Adolescente , Ataxia/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Exoma/genética , Femenino , Francia , Heterogeneidad Genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Mutación/genética , Fenotipo , Secuenciación del Exoma/métodos , Adulto JovenRESUMEN
Mutations that disrupt the TBC1D24 presynaptic protein have been implicated in various neurological disorders including epilepsy, chronic encephalopathy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures) syndrome, nonsyndromic hearing loss, and myoclonus. We present the case of a 22-month-old male with infantile-onset paroxysmal episodes of facial and limb myoclonus. The episodes were linked to biallelic variants in exon 2 of the TBC1D24 gene that lead to amino acid changes (c.304C >T/p.Pro102Ser and c.410T > C/p.Val137Ala), each variant being inherited from a parent. Follow-up imaging in adolescence revealed widened right cerebellar sulci. We discuss the evolving landscape of TBC1D24 associated phenotypes; this case adds to a growing body of evidence linking this gene to movement disorders in children.
Asunto(s)
Ataxia/diagnóstico , Ataxia/genética , Proteínas Activadoras de GTPasa/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Edad de Inicio , Ataxia/complicaciones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Lactante , Masculino , Trastornos del Movimiento/complicaciones , MutaciónRESUMEN
INTRODUCTION: Tuberous sclerosis complex (TSC) is a multisystemic genetic disease with high clinical variability and age-related manifestations. These characteristics add to the complexity of transition to adulthood. This study aimed to explore the perception of medical follow-up and transition experience in a large group of patients with TSC who presented epilepsy in childhood. METHOD: This multicenter French study included patients with TSC aged 18â¯years or older who developed epilepsy before the age of 16â¯years. A questionnaire specifically designed for the study explored patients' opinion through 270 questions covering different aspects of their social, familial, professional, and medical courses. RESULTS: The questionnaire was sent to 72 patients, and 60 patients were included in the study (83% response rate) with a mean age of 32â¯years (18-55â¯years). Cognitive impairment was present in 80% of patients, and half of questionnaires were completed by the family. Pediatric care was coordinated by the child neurologist and was more regular and multidisciplinary than adult care. Epilepsy had the best follow-up followed by renal issues. Unmet needs were identified for psychiatric and behavioral disorders, both in children and adults. Respondents considered the help in achieving autonomy better in adult care. Only 50% of patients with a normal intellectual development had clear knowledge about their disease and the need for a regular monitoring. Two-thirds of respondents estimated that they had a transition experience between 16.5 and 21-year-old, considered as good in 60% of them. Seventy percent felt continuity between pediatric and adult care, and only 3% of respondents felt that their care would have been better if they were still followed in pediatric healthcare system. The change of care structure and/or caregivers was the most stressful factor during transition and transfer. CONCLUSION: This study highlights persistent issues in the regularity and coordination of the follow-up of patients with TSC despite established international guidelines. Although most patients had a positive transition experience, there is still an urgent need to optimize transition programs. This would be essential to maintain care continuity between pediatric and adult health systems, especially for patients with TSC with epilepsy and high rate of cognitive and psychiatric impairments.
Asunto(s)
Atención a la Salud/tendencias , Transferencia de Pacientes/tendencias , Pediatría/tendencias , Calidad de Vida/psicología , Esclerosis Tuberosa/psicología , Esclerosis Tuberosa/terapia , Adolescente , Adulto , Cuidadores/psicología , Cuidadores/tendencias , Atención a la Salud/métodos , Familia/psicología , Femenino , Estudios de Seguimiento , Francia/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Transferencia de Pacientes/métodos , Pediatría/métodos , Encuestas y Cuestionarios , Esclerosis Tuberosa/epidemiología , Adulto JovenRESUMEN
Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.
Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Trastornos del Neurodesarrollo/genética , Bloqueadores de los Canales de Sodio/uso terapéutico , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Dinamarca/epidemiología , Epilepsia/epidemiología , Femenino , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto JovenRESUMEN
Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Encefalopatías/genética , Predisposición Genética a la Enfermedad , Microcefalia/genética , Mutación , Convulsiones/genética , Aminoacilación , Animales , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Microcefalia/patología , Linaje , Pez CebraRESUMEN
OBJECTIVE: To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. RESULTS: In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. CONCLUSIONS: Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability.
Asunto(s)
Agenesia del Cuerpo Calloso/genética , Variaciones en el Número de Copia de ADN , Discapacidad Intelectual/genética , Adolescente , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/genética , Niño , Preescolar , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 19 , Cromosomas Humanos Par 3 , Cromosomas Humanos Par 7 , Cromosomas Humanos Par 8 , Femenino , Proteínas Hedgehog/genética , Humanos , Masculino , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Adulto Joven , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genéticaRESUMEN
OBJECTIVE: We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. METHODS: We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. RESULTS: We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. CONCLUSIONS: SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.
RESUMEN
OBJECTIVE: To describe the epileptic phenotype of Tsc1(+/-) mice pups in comparison with age-related seizures in human tuberous sclerosis complex (TSC). METHODS: Tsc1(+/-) and control mice underwent intracranial electroencephalography (EEG) recording at postnatal ages (P)8 to P33, with linear silicon probe implanted in the somatosensory cortex of one or both hemispheres for 8-24 h. Ictal events were classified visually by independent analyzers; distinct EEG patterns were related to age and analyzed to quantify field potential characteristics and signal dynamics between hemispheres. We collected retrospectively 20 infants with prenatally diagnosed TSC and EEG before seizure onset, and analyzed the electroclinical course of epilepsy, taking into account a first-line treatment by vigabatrin. RESULTS: Spontaneous seizures were disclosed in 55% of Tsc1(+/-) mice at P9-18. Three ictal patterns were identified: from P9 to P12 "spike clusters" consisted of recurring large spikes without clinical correlate; "spasm-like" discharges dominated from P13 to P16 consisting of high amplitude large field potential superimposed with or followed by fast activity repeated every 2-10 s for at least 20 s, accompanied by rhythmic limb contractions; from P14 to P18 a "tonic-clonic like" pattern comprised rhythmic spikes of increasing amplitude with tonic-clonic movements. Early onset "spike clusters" were mainly unilateral, whereas "spasm-like" and "tonic-clonic like" patterns were bilateral. Interhemispheric propagation was significantly faster for "tonic-clonic like" than for "spasm-like" events. In infants diagnosed prenatally with TSC, clusters of sharp waves or spikes preceded the first seizure, and vigabatrin prevented the development of seizures. Patients treated after seizure onset developed spasms or focal seizures that were pharmacoresistant in 66.7% of cases. SIGNIFICANCE: Tsc1(+/-) mice pups exhibit an age-dependent seizure pattern sequence mimicking early human TSC epilepsy features. Spike clusters before seizure onset in TSC should be considered as a first stage of epilepsy reinforcing the concept of preventive antiepileptic therapy.
Asunto(s)
Epilepsia/metabolismo , Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Adolescente , Factores de Edad , Animales , Niño , Preescolar , Epilepsia/genética , Epilepsia/patología , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estudios Retrospectivos , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genéticaRESUMEN
OBJECTIVE: Mutations in the syntaxin binding protein 1 gene (STXBP1) have been associated mostly with early onset epileptic encephalopathies (EOEEs) and Ohtahara syndrome, with a mutation detection rate of approximately 10%, depending on the criteria of selection of patients. The aim of this study was to retrospectively describe clinical and electroencephalography (EEG) features associated with STXBP1-related epilepsies to orient molecular screening. METHODS: We screened STXBP1 in a cohort of 284 patients with epilepsy associated with a developmental delay/intellectual disability and brain magnetic resonance imaging (MRI) without any obvious structural abnormality. We reported on patients with a mutation and a microdeletion involving STXBP1 found using array comparative genomic hybridization (CGH). RESULTS: We found a mutation of STXBP1 in 22 patients and included 2 additional patients with a deletion including STXBP1. In 22 of them, epilepsy onset was before 3 months of age. EEG at onset was abnormal in all patients, suppression-burst and multifocal abnormalities being the most common patterns. The rate of patients carrying a mutation ranged from 25% in Ohtahara syndrome to <5% in patients with an epilepsy beginning after 3 months of age. Epilepsy improved over time for most patients, with an evolution to West syndrome in half. Patients had moderate to severe developmental delay with normal head growth. Cerebellar syndrome with ataxic gait and/or tremor was present in 60%. SIGNIFICANCE: Our data confirm that STXBP1 mutations are associated with neonatal-infantile epileptic encephalopathies. The initial key features highlighted in the cohort of early epileptic patients are motor seizures either focal or generalized, abnormal initial interictal EEG, and normal head growth. In addition, we constantly found an ongoing moderate to severe developmental delay with normal head growth. Patients often had ongoing ataxic gait with trembling gestures. Altogether these features should help the clinician to consider STXBP1 molecular screening.
Asunto(s)
Epilepsia/genética , Proteínas Munc18/genética , Edad de Inicio , Encéfalo/patología , Encéfalo/fisiopatología , Niño , Preescolar , Hibridación Genómica Comparativa , Electroencefalografía , Epilepsias Mioclónicas/genética , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mutación , Estudios Retrospectivos , Eliminación de Secuencia , Espasmos Infantiles/genéticaRESUMEN
We report a longitudinal case study of a left-handed girl who underwent left hemispherotomy at 7 years for Rasmussen encephalitis (RE). Presurgical evaluation showed mild hemiparesis, no visual defect, and light neuropsychological impairment with short-term memory weakness. Language fMRI showed a right hemispheric dominance. Postoperatively, the patient exhibited right hemiplegia and hemianopsia but preserved intellectual capacities. She became seizure-free, and antiepileptic medication was discontinued. Long-term follow-up showed very high verbal intelligence at 11 years of age (VCI of 155) and improvement in working memory as well as language and reading abilities. Furthermore, a significant visuoverbal discrepancy became increasingly pronounced. Thus, early surgical treatment of epilepsy avoided the global cognitive deterioration usually associated with RE. Finally, such a high level of verbal functioning combined with low spatial reasoning with a single hemisphere provides additional information on the neurocognitive profile of children with RE after hemispherotomy.
Asunto(s)
Encéfalo/fisiopatología , Encefalitis/fisiopatología , Encefalitis/psicología , Inteligencia/fisiología , Mapeo Encefálico , Niño , Encefalitis/cirugía , Femenino , Lateralidad Funcional/fisiología , Hemisferectomía , Humanos , Pruebas de Inteligencia , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , LecturaRESUMEN
Hormonal therapy or ketogenic diet often permits overcoming the challenging periods of many epileptic encephalopathies (West and Lennox-Gastaut syndromes and encephalopathy with continuous spike-waves in slow sleep), but relapse affects over 20% of patients. We report here a monocenter pilot series of 42 consecutive patients in whom we combined oral steroids with the ketogenic diet for corticosteroid-resistant or -dependent epileptic encephalopathy. We retrospectively evaluated the effect on seizure frequency, interictal spike activity, neuropsychological course, and steroid treatment course. Twenty-three patients had West syndrome (WS), 13 had encephalopathy with continuous spike-waves in slow sleep (CSWS), and six others had miscellaneous epileptic encephalopathies. All patients succeeded to reach 0.8 to 1.6g/l ketone bodies in the urine following the usual KD regimen. For at least 6 months, 14/42 responded to the addition of the ketogenic diet: 4/23 with WS, 8/13 with CSWS, and 2/6 with miscellaneous epileptic encephalopathies. The addition of the KD allowed withdrawing steroids in all responders. Among them, 10/15 had been patients with steroid-dependent epileptic encephalopathy and 4/27 patients with steroid-resistant epileptic encephalopathy. Therefore, the ketogenic diet can be used successfully in combination with corticosteroids for epileptic encephalopathies. Patients presenting with steroid-dependent CSWS seem to be the best candidates.
Asunto(s)
Corticoesteroides/uso terapéutico , Dieta Cetogénica , Epilepsia/dietoterapia , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Corticoesteroides/farmacología , Anticonvulsivantes/uso terapéutico , Electroencefalografía/efectos de los fármacos , Femenino , Humanos , Lactante , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Masculino , Estudios Retrospectivos , Convulsiones/diagnóstico , Sueño/efectos de los fármacos , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/tratamiento farmacológico , Resultado del TratamientoRESUMEN
Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene.