Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Enfermedades Vestibulares , Humanos , Anomalías Múltiples/genética , Enfermedades Vestibulares/genética , Discapacidad Intelectual/genética , Cara/anomalías , Cara/patología , Proteínas de Unión al ADN/genética , Masculino , Femenino , Enfermedades Hematológicas/genética , Trastornos del Neurodesarrollo/genética , Anomalías Craneofaciales/genética , Cromosomas Humanos Par 9/genética , Niño , Metilación de ADN/genética , Preescolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricosis/genética , Mutación , Insuficiencia de Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Cardiopatías Congénitas
2.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965478

RESUMEN

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN , Paraparesia Espástica , Factores de Transcripción , Paraparesia Espástica/genética , Humanos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Femenino , Linaje , Alelos , Lactante , Preescolar , Niño , Adolescente , Estructura Secundaria de Proteína , ARN Nuclear Pequeño/genética
3.
Ann Neurol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301775

RESUMEN

OBJECTIVE: De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS: Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS: We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION: Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.

4.
Brain ; 147(11): 3681-3689, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38884572

RESUMEN

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis and frontotemporal dementia, based on identification of likely pathogenic variants in patients from distinct amyotrophic lateral sclerosis and frontotemporal dementia cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in silico tools. In addition, gene burden analyses in the 100 000 Genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls [odds ratio: 57.0847 (10.2-576.7); P = 4.02 ×10-7]. Taken together, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harbouring a predicted pathogenic TUBA4A missense mutation, including five confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from three patients harbouring distinct TUBA4A missense showed significant alterations in microtubule organization and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.


Asunto(s)
Espasticidad Muscular , Mutación Missense , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Masculino , Femenino , Persona de Mediana Edad , Espasticidad Muscular/genética , Mutación Missense/genética , Adulto , Anciano , Ataxia Cerebelosa/genética , Ataxias Espinocerebelosas/genética , Linaje , Estudios de Cohortes , Francia , Discapacidad Intelectual , Atrofia Óptica
5.
J Med Genet ; 61(9): 878-885, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38937076

RESUMEN

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Discapacidad Intelectual , Humanos , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Francia/epidemiología , Niño , ADN (Citosina-5-)-Metiltransferasas/genética , Preescolar , Adolescente , Mutación de Línea Germinal/genética , Adulto , Fenotipo , Adulto Joven , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Lactante
6.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811806

RESUMEN

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Asunto(s)
Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Histona Desacetilasas/metabolismo , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Acetilación , Adolescente , Animales , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Lactante , Larva/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Síndrome , Adulto Joven , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
7.
PLoS Pathog ; 18(10): e1010640, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36191034

RESUMEN

Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.


Asunto(s)
Leishmania , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Leishmania/metabolismo , Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Qa-SNARE/metabolismo , Sinaptotagminas , Serina-Treonina Quinasas TOR/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Factores de Virulencia , Zinc/metabolismo
8.
Clin Genet ; 106(6): 776-781, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39221916

RESUMEN

Glutathione synthetase deficiency is a rare inborn metabolic disease usually caused by biallelic variants in GSS. Clinical severity varies from isolated hemolytic anemia, sometimes associated with chronic metabolic acidosis and 5-oxoprolinuria, to severe neurological phenotypes with neonatal lethality. Here we report on two fetal siblings from two pregnancies with glutathione synthetase deficiency exhibiting similar multiple congenital anomalies associating phocomelia, cleft palate, intra-uterine growth retardation, genito-urinary malformations, and congenital heart defect. Genome sequencing showed that both fetuses were compound heterozygous for two GSS variants: the previously reported pathogenic missense substitution NM_000178.4 c.800G>A p.(Arg267Gln), and a 2.4 kb intragenic deletion NC_000020.11:g.34944530_34946833del. RNA-seq on brain tissue revealed the out-of-frame deletion of the exon 3 and an almost monoallelic expression of the missense variant (88%), suggesting degradation of the deletion-harboring allele by nonsense-mediated mRNA decay. 5-oxoproline (pyroglutamic acid) levels in amniotic fluid were elevated, suggesting an alteration of the gamma-glutamyl cycle, and corroborating the pathogenicity of the two GSS variants. Only one case of glutathione synthetase deficiency with limb malformations has previously been reported, in a newborn homozygous for the c.800G>A variant. Thus, our data allow us to discuss a potential phenotypic extension of glutathione synthetase deficiency, with a possible involvement of the c.800G>A variant.


Asunto(s)
Anomalías Múltiples , Feto , Glutatión Sintasa , Humanos , Glutatión Sintasa/genética , Glutatión Sintasa/deficiencia , Femenino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Embarazo , Fenotipo , Masculino , Mutación Missense/genética , Alelos , Mutación , Errores Innatos del Metabolismo de los Aminoácidos
9.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740550

RESUMEN

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Masculino , Femenino , Niño , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crecimiento , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome , Índice de Masa Corporal , Estatura/genética
10.
Am J Med Genet A ; 194(7): e63559, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421105

RESUMEN

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.


Asunto(s)
Haploinsuficiencia , Trastornos del Desarrollo del Lenguaje , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Fenotipo , Proteínas de Neoplasias/genética
11.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109419

RESUMEN

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de Aminoácido
12.
Clin Genet ; 104(5): 554-563, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580112

RESUMEN

The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Mutación , Detección Precoz del Cáncer , Trastornos del Crecimiento/diagnóstico , Tumor de Wilms/diagnóstico , Tumor de Wilms/epidemiología , Tumor de Wilms/genética , Fosfatidilinositol 3-Quinasa Clase I/genética
13.
J Endovasc Ther ; : 15266028231179596, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287246

RESUMEN

PURPOSE: The cauda equina syndrome (CES) is a rare condition affecting less than 1 in 100,000 patients annually. Diagnosing CES is challenging because of its rare incidence, potentially subtle presentation, and various underlying etiologies. Vascular causes, such as inferior vena cava (IVC) thrombosis, are uncommon but should be considered, since timely recognition and treatment of deep vein thrombosis (DVT) as a cause of CES can avoid irreversible neurological damage. CASE REPORT: A 30-year-old male presented with partial CES caused by nerve root compression due to venous congestion from an extensive iliocaval DVT. He completely recovered after thrombolysis and stenting of the IVC. His iliocaval tract remained patent until the last date of follow-up at 1 year without signs of post-thrombotic syndrome. Broad molecular, infectious, and hematological laboratory tests did not reveal any underlying disease for the thrombotic event, particularly no hereditary or acquired thrombophilia. CONCLUSION: Timely recognition of venous thrombosis as a cause of CES is essential. This is the first case report of CES caused by an extensive iliocaval DVT successfully treated with thrombolysis and venous stenting with good resolution of DVT and CES. CLINICAL IMPACT: This case-report describes a patient with cauda equina syndrome resulting from an extensive iliocaval deep vein thrombosis due to an underlying stenosis of the inferior vena cava. Thrombolysis and venous stenting succesfully restored venous patency and thereby relieved symptoms and signs of cauda equina syndrome, in addition to (long-term) therapeutic dose anticoagulation. It is important to timely recognize deep vein thrombosis as a cause of cauda equina syndrome and to consider endovenous treatment in a specialized center.

14.
Brain ; 145(11): 3770-3775, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35883251

RESUMEN

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Proteína de Replicación C , Humanos , Vestibulopatía Bilateral/complicaciones , Ataxia Cerebelosa/genética , Enfermedades del Sistema Nervioso Periférico/complicaciones , Enfermedades del Sistema Nervioso Periférico/genética , Reflejo Anormal , ARN Mensajero/genética , Síndrome , Proteína de Replicación C/genética
15.
Prenat Diagn ; 43(6): 746-755, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37173814

RESUMEN

OBJECTIVE: Recent studies have evaluated prenatal exome sequencing (pES) for abnormalities of the corpus callosum (CC). The objective of this study was to compare imaging phenotype and genotype findings. METHOD: This multicenter retrospective study included fetuses with abnormalities of the CC between 2018 and 2020 by ultrasound and/or MRI and for which pES was performed. Abnormalities of the CC were classified as complete (cACC) or partial (pACC) agenesis of the CC, short CC (sCC), callosal dysgenesis (CD), interhemispheric cyst (IHC), or pericallosal lipoma (PL), isolated or not. Only pathogenic (class 5) or likely pathogenic (class 4) (P/LP) variants were considered. RESULTS: 113 fetuses were included. pES identified P/LP variants for 3/29 isolated cACC, 3/19 isolated pACC, 0/10 isolated sCC, 5/10 isolated CD, 5/13 non-isolated cACC, 3/6 non-isolated pACC, 8/11 non-isolated CD and 0/12 isolated IHC and PL. Associated cerebellar abnormalities were significantly associated with P/LP variants (OR = 7.312, p = 0.027). No correlation was found between phenotype and genotype, except for fetuses with a tubulinopathy and an MTOR pathogenic variant. CONCLUSIONS: P/LP variants were more frequent in CD and in non-isolated abnormalities of the CC. No such variants were detected for fetuses with isolated sCC, IHC and PL.


Asunto(s)
Cuerpo Calloso , Ultrasonografía Prenatal , Embarazo , Femenino , Humanos , Cuerpo Calloso/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/genética , Imagen por Resonancia Magnética/métodos , Genotipo , Fenotipo , Canales de Cloruro , Diagnóstico Prenatal
16.
Infect Immun ; 90(3): e0018321, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35130453

RESUMEN

To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins to the expansion and functionality of communal vacuoles as well as the replication of the parasite. The differential patterns of recruitment of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor to communal vacuoles harboring Leishmania amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to the optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither protein has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.


Asunto(s)
Leishmania mexicana , Leishmania , Animales , Vivienda , Leishmania/fisiología , Macrófagos/metabolismo , Mamíferos , Vacuolas/parasitología , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
17.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639323

RESUMEN

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/mortalidad , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Herencia Materna , Organogénesis , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/metabolismo
18.
Genet Med ; 24(5): 1096-1107, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35063350

RESUMEN

PURPOSE: Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS: We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS: We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION: We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteína Quinasa CDC2/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/genética , Fenotipo
19.
Genet Med ; 24(1): 179-191, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906456

RESUMEN

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Anomalías Musculoesqueléticas , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Anomalías Musculoesqueléticas/genética , Fenotipo
20.
Pediatr Blood Cancer ; 69(3): e29536, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971023

RESUMEN

OBJECTIVE: Approximately 7%-50% of children with medulloblastoma (MB) develop postoperative cerebellar mutism syndrome (pCMS). pCMS has a short-term negative impact on intelligence, but effects on long-term outcomes are contradictory. The aim of this study was to assess long-term effects of pCMS in MB patients on aspects of intelligence quotient (IQ) and its perioperative risk factors. METHODS: In this single-center retrospective cohort study, 31 children were included (14 pCMS). Perioperative risk factors included brainstem invasion, vermis incision, hydrocephalus, tumor size, severity of pCMS, neurological symptoms, mean body temperature (BT) on days 1-4 post surgery, and age at resection. Age-appropriate Wechsler Intelligence tests were assessed at least 2 years after tumor resection. RESULTS: Mean interval between tumor resection and neuropsychological evaluation was 3.9 years in pCMS and 4 years and 11 months in the no-pCMS group. No significant differences in IQ scores were found between groups. The pCMS group had a clinically relevant difference of 10 points when compared to age norms on verbal IQ (VIQ). Bilateral pyramidal and swallowing problems were risk factors for lower performance. In the overall group, tumor size, younger age at surgery, and raised mean BT were negatively correlated with aspects of IQ. CONCLUSIONS: We found a clinically significant reduction of VIQ in the pCMS patient group. pCMS patients with a larger tumor size, younger age at surgery, a higher mean BT in the first days after surgery, bilateral pyramidal symptoms, and swallowing problems 10 days post surgery are more at risk for VIQ deficits at long-term.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Mutismo , Neoplasias Cerebelosas/complicaciones , Neoplasias Cerebelosas/cirugía , Niño , Humanos , Inteligencia , Meduloblastoma/complicaciones , Meduloblastoma/cirugía , Mutismo/etiología , Mutismo/patología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/patología , Estudios Retrospectivos , Factores de Riesgo , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA