RESUMEN
INTRODUCTION: Peripheral nerve injuries are a significant clinical challenge. The rat sciatic nerve serves as an ideal model for studying nerve regeneration. Extensive research has been conducted to unravel the intricate mechanisms involved in peripheral nerve regeneration, aiming to develop effective therapeutic strategies for nerve injury patients. Research including different types of materials that can be used as nerve guides like synthetic polymers have been investigated for their biocompatibility and molding properties. Among multiple stem cell types, adipose-derived stem cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and induced pluripotent stem cells (iPSCs) have shown neuroprotective and regenerative important properties. METHODS: The purposes of our study were to develop a protocol for rat sciatic nerve injury treated with 3D-printed guide and adipose stem cells to investigate nerve regeneration through histologic examination and biomechanical characteristics of muscular tissue. We use 20 (100%) male Wistar rats, measuring between 350 g ± 35 g, who underwent complete transection of the right sciatic nerve, resulting in a 1 cm defect. The group was separated into three subgroups: the first subgroup (n = 8) was treated with a 3D-printed guide with adipose stem cells, the second subgroup (n = 8) was treated with a 3D-printed guide without adipose stem cells, and the third subgroup (n = 4) was the control group. At four, eight, and 12 weeks, we measured with ultrasonography the grade of muscular atrophy. At 12 weeks, we harvested the sciatic nerve and performed a histological examination and mechanical investigation of the tibialis anterior muscle. RESULTS: On the examined specimen of the first subgroup, cross-sectioned nerve structures were present, surrounded by a mature fibro-adipose connective tissue, with blood vessels. In the second subgroup, no nerve structure was observed on the examined sections, but in the polymorphic inflammatory infiltrate and control group, no signs of regeneration were found. CONCLUSIONS: The present study shows a promising potential when utilizing adipose stem cell-based therapies for promoting peripheral nerve regeneration following large (>1 cm) nerve defects knowing that at this size, regeneration is impossible with known treatments.
RESUMEN
BACKGROUND: Peripheral nerve injuries (PNIs) represent a significant clinical problem, and standard approaches to nerve repair have limitations. Recent breakthroughs in 3D printing and stem cell technologies offer a promising solution for nerve regeneration. The main purpose of this study was to examine the biomechanical characteristics in muscle tissue distal to a nerve defect in a murine model of peripheral nerve regeneration from physiological stress to failure. METHODS: In this experimental study, we enrolled 18 Wistar rats in which we created a 10 mm sciatic nerve defect. Furthermore, we divided them into three groups as follows: in Group 1, we used 3D nerve guidance conduits (NGCs) and adipose stem cells (ASCs) in seven rats; in Group 2, we used only 3D NGCs for seven rats; and in Group 3, we created only the defect in four rats. We monitored the degree of atrophy at 4, 8, and 12 weeks by measuring the diameter of the tibialis anterior (TA) muscle. At the end of 12 weeks, we took the TA muscle and analyzed it uniaxially at 10% stretch until failure. RESULTS: In the group of animals with 3D NGCs and ASCs, we recorded the lowest degree of atrophy at 4 weeks, 8 weeks, and 12 weeks after nerve reconstruction. At 10% stretch, the control group had the highest Cauchy stress values compared to the 3D NGC group (0.164 MPa vs. 0.141 MPa, p = 0.007) and the 3D NGC + ASC group (0.164 MPa vs. 0.123 MPa, p = 0.007). In addition, we found that the control group (1.763 MPa) had the highest TA muscle stiffness, followed by the 3D NGC group (1.412 MPa), with the best muscle elasticity showing in the group in which we used 3D NGC + ASC (1.147 MPa). At failure, TA muscle samples from the 3D NGC + ASC group demonstrated better compliance and a higher degree of elasticity compared to the other two groups (p = 0.002 and p = 0.008). CONCLUSIONS: Our study demonstrates that the combination of 3D NGC and ASC increases the process of nerve regeneration and significantly improves the compliance and mechanical characteristics of muscle tissue distal to the injury site in a PNI murine model.