Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 323(2): C505-C519, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759431

RESUMEN

One of the main components of the extracellular matrix (ECM) of blood vessels is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the plasma membrane in the pericellular space via HAS or HA-binding proteins. Several cell surface proteins can interact with HA working as HA receptors, like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and the adventitia where it is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations that have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that induce the cells to exit from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Furthermore, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on deeply analyzing the effects of HA on vascular cell behavior.


Asunto(s)
Aterosclerosis , Ácido Hialurónico , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Macrófagos/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
Semin Cancer Biol ; 62: 9-19, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31319162

RESUMEN

Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.


Asunto(s)
Susceptibilidad a Enfermedades , Ácido Hialurónico/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Metabolismo Energético , Matriz Extracelular/metabolismo , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Neovascularización Patológica/metabolismo , Transducción de Señal , Escape del Tumor , Microambiente Tumoral
3.
J Biol Chem ; 295(11): 3485-3496, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932306

RESUMEN

Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Hialuronano Sintasas/genética , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , Sirtuina 1/metabolismo , Aorta/citología , Núcleo Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Inflamación/patología , Modelos Biológicos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Transporte de Proteínas/efectos de los fármacos , Resveratrol/farmacología , Factor de Necrosis Tumoral alfa
4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360868

RESUMEN

Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells' survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.


Asunto(s)
Matriz Extracelular/metabolismo , Inflamación , Neoplasias , Proteostasis , Microambiente Tumoral , Humanos , Inflamación/metabolismo , Inflamación/patología , Neoplasias/metabolismo , Neoplasias/patología
5.
Adv Exp Med Biol ; 1245: 147-161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32266657

RESUMEN

The biology of tumor cells strictly depends on their microenvironment architecture and composition, which controls the availability of growth factors and signaling molecules. Thus, the network of glycosaminoglycans, proteoglycans, and proteins known as extracellular matrix (ECM) that surrounds the cells plays a central role in the regulation of tumor fate. Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are highly versatile ECM components that bind and regulate the activity of growth factors, cell membrane receptors, and other ECM molecules. These HS binding partners modulate cell adhesion, motility, and proliferation that are processes altered during tumor progression. Modification in the expression and activity of HS, HSPGs, and the respective metabolic enzymes results unavoidably in alteration of tumor cell microenvironment. In this light, the targeting of HS structure and metabolism is potentially a new tool in the treatment of different cancer types.


Asunto(s)
Heparitina Sulfato , Neoplasias , Microambiente Tumoral , Matriz Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología
6.
Cell Biol Int ; 42(7): 804-814, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29345399

RESUMEN

Tendinitis changes the biochemical and morphological properties of the tendon, promoting an increase of activity of metalloproteinases and disorganization of collagen bundles. Tenocytes, the primary cells in tendon, are scattered throughout the collagenic fibers, and are responsible of tendon remodeling and tissue repair in pathological condition. In vivo, glycine, component of the typical Gly-X-Y collagen tripeptide, showed beneficial effects in biochemical and biomechanical properties of Achilles tendon with tendinitis. In this study, we analyzed the effect of glycine in tenocytes subjected to inflammation. Tenocytes from Achilles tendon of rats were treated with TNF-α (10 ng/mL) with and without previous treatment with glycine (20 mM). Cell proliferation and migration were evaluated, as well as the expression of matrix molecules such as glycosaminoglycans, metalloproteinases (MMPs), TIMPs, and collagen I. Glycine can revert the inflammation due to the action of TNF-α by controlling the MMPs quantity and activity. These data indicated that the molecules involved to remodeling process of extracellular matrix are modulated both by TNF-α and the availability of collagen precursors; in fact, this study indicates the glycine can be useful for treatment of inflammation and for modulating tenocytes metabolism in tendons.


Asunto(s)
Glicina/farmacología , Tendones/efectos de los fármacos , Tenocitos/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Tendón Calcáneo/efectos de los fármacos , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Masculino , Ratas Wistar , Tendinopatía/tratamiento farmacológico
7.
Glycoconj J ; 34(3): 411-420, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27744520

RESUMEN

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (ß4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of ß4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in ß4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Asunto(s)
Sulfatos de Condroitina/biosíntesis , Dermatán Sulfato/análogos & derivados , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Heparitina Sulfato/biosíntesis , Ácido Hialurónico/biosíntesis , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Sulfatos de Condroitina/antagonistas & inhibidores , Sulfatos de Condroitina/genética , Dermatán Sulfato/antagonistas & inhibidores , Dermatán Sulfato/biosíntesis , Dermatán Sulfato/genética , Células Epiteliales/patología , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/genética , Humanos , Hialuronano Sintasas/antagonistas & inhibidores , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/antagonistas & inhibidores , Ácido Hialurónico/genética , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetil-Lactosamina Sintasa/antagonistas & inhibidores , N-Acetil-Lactosamina Sintasa/genética , N-Acetil-Lactosamina Sintasa/metabolismo , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
8.
J Biol Chem ; 289(42): 28816-26, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25183006

RESUMEN

Changes in the microenvironment organization within vascular walls are critical events in the pathogenesis of vascular pathologies, including atherosclerosis and restenosis. Hyaluronan (HA) accumulation into artery walls supports vessel thickening and is involved in many cardiocirculatory diseases. Excessive cytosolic glucose can enter the hexosamine biosynthetic pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and lead to modification of cytosolic proteins via O-linked attachment of the monosaccharide ß-N-GlcNAc (O-GlcNAcylation) from UDP-GlcNAc by the enzyme O-GlcNAc transferase. As many cytoplasmic and nuclear proteins can be glycosylated by O-GlcNAc, we studied whether the expression of the HA synthases that synthesize HA could be controlled by O-GlcNAcylation in human aortic smooth muscle cells. Among the three HAS isoenzymes, only HAS2 mRNA increased after O-GlcNAcylation induced by glucosamine treatments or by inhibiting O-GlcNAc transferase with PUGNAC (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate). We found that the natural antisense transcript of HAS2 (HAS2-AS1) was absolutely necessary to induce the transcription of the HAS2 gene. Moreover, we found that O-GlcNAcylation modulated HAS2-AS1 promoter activation by recruiting the NF-κB subunit p65, but not the HAS2 promoter, whereas HAS2-AS1 natural antisense transcript, working in cis, regulated HAS2 transcription by altering the chromatin structure around the HAS2 proximal promoter via O-GlcNAcylation and acetylation. These results indicate that HAS2 transcription can be finely regulated not only by recruiting transcription factors to the promoter as previously described but also by modulating chromatin accessibility by epigenetic modifications.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glucuronosiltransferasa/genética , Acetilglucosamina/química , Animales , Aorta/enzimología , Secuencia de Bases , Núcleo Celular/enzimología , Cromatina/química , Citoplasma/enzimología , Epigénesis Genética , Silenciador del Gen , Glucuronosiltransferasa/fisiología , Humanos , Hialuronano Sintasas , Masculino , Ratones , Ratones Noqueados , Modelos Genéticos , Datos de Secuencia Molecular , Monosacáridos/química , Miocitos del Músculo Liso/enzimología , N-Acetilglucosaminiltransferasas/química , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Transcripción Genética
9.
Biochim Biophys Acta ; 1840(8): 2452-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24513306

RESUMEN

BACKGROUND: Hyaluronan is a critical component of extracellular matrix with several different roles. Besides the contribution to the tissue hydration, mechanical properties and correct architecture, hyaluronan plays important biological functions interacting with different molecules and receptors. SCOPE OF REVIEW: The review addresses the control of hyaluronan synthesis highlighting the critical role of hyaluronan synthase 2 in this context as well as discussing the recent findings related to covalent modifications which influence the enzyme activity. Moreover, the interactions with specific receptors and hyaluronan are described focusing on the importance of polymer size in the modulation of hyaluronan signaling. MAJOR CONCLUSIONS: Due to its biological effects on cells recently described, it is evident how hyaluronan is to be considered not only a passive component of extracellular matrix but also an actor involved in several scenarios of cell behavior. GENERAL SIGNIFICANCE: The effects of metabolism on the control of hyaluronan synthesis both in healthy and pathologic conditions are critical and still not completely understood. The hyaluronan capacity to bind several receptors triggering specific pathways may represent a valid target for new approach in several therapeutic strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Asunto(s)
Ácido Hialurónico/biosíntesis , Transducción de Señal , Animales , Vías Biosintéticas , Humanos , Receptores de Hialuranos/química , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química
10.
Glycoconj J ; 32(3-4): 93-103, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25971701

RESUMEN

The hyaluronan (HA) polymer is a critical component of extracellular matrix with a remarkable structure: is a linear and unbranched polymer without sulphate or phosphate groups. It is ubiquitous in mammals showing several biological functions, ranging from cell proliferation and migration to angiogenesis and inflammation. For its critical biological functions the amount of HA in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The concentration of HA is also critical in several pathologies including cancer, diabetes and inflammation. Beside these biological roles, the structural properties of HA allow it to take advantage of its capacity to form gels even at concentration of 1 % producing scaffolds with very promising applications in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues as well as its role in important human pathologies. In the second part of the review we highlight the different use of HA polymers in the modern biotechnology.


Asunto(s)
Biotecnología/métodos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Animales , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurónico/administración & dosificación , Inflamación/metabolismo , Neoplasias/metabolismo
11.
J Biol Chem ; 288(41): 29595-603, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23979132

RESUMEN

Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 µg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 µg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 µg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Ácido Hialurónico/biosíntesis , Lipoproteínas LDL/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Anticuerpos/inmunología , Anticuerpos/farmacología , Aorta/citología , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Chaperón BiP del Retículo Endoplásmico , Matriz Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Glucuronosiltransferasa/genética , Humanos , Hialuronano Sintasas , Lipoproteínas LDL/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Miocitos del Músculo Liso/metabolismo , Oxidación-Reducción , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Depuradores de Clase E/antagonistas & inhibidores , Receptores Depuradores de Clase E/inmunología , Receptores Depuradores de Clase E/metabolismo , Células U937
12.
J Biol Chem ; 287(42): 35544-35555, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22887999

RESUMEN

Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.


Asunto(s)
Aorta/metabolismo , Sulfatos de Condroitina/biosíntesis , Angiopatías Diabéticas/metabolismo , Glucuronosiltransferasa/metabolismo , Ácido Hialurónico/biosíntesis , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Sustitución de Aminoácidos , Aorta/patología , Línea Celular , Sulfatos de Condroitina/genética , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Glucuronosiltransferasa/genética , Glicosilación , Humanos , Hialuronano Sintasas , Ácido Hialurónico/genética , Proteínas Musculares/genética , Músculo Liso Vascular/patología , Mutación Missense , Uridina Difosfato N-Acetilglucosamina/genética
13.
Cancers (Basel) ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36765756

RESUMEN

The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.

14.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37568628

RESUMEN

The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.

15.
Methods Mol Biol ; 2619: 53-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662461

RESUMEN

Hyaluronan (HA) is the most abundant glycosaminoglycan in the extracellular matrix, and its deposition is strictly related to changes in cellular behaviors, such as cell migration, proliferation, and adhesion. Pericellular HA is abundant in a variety of cell types, and its amount could reflect specific conditions, thus suggesting a particular cellular status.Particle exclusion assay is a useful tool to visualize pericellular matrices with a high HA content, simply employing microscope image analysis. This approach is quick and allows to visualize the presence of a clear pericellular region around single cells, where fixed red blood cells are excluded if the pericellular matrix has been deposited.


Asunto(s)
Matriz Extracelular , Ácido Hialurónico , Ácido Hialurónico/metabolismo , Matriz Extracelular/metabolismo , Movimiento Celular , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/metabolismo
16.
J Biol Chem ; 286(10): 7917-7924, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21228273

RESUMEN

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) involved in cell motility, proliferation, tissue remodeling, development, differentiation, inflammation, tumor progression, and invasion and controls vessel thickening in cardiovascular diseases. Therefore, the control of HA synthesis could permit the fine-tuning of cell behavior, but the mechanisms that regulate HA synthesis are largely unknown. Recent studies suggest that the availability of the nucleotide-sugar precursors has a critical role. Because the formation of UDP-sugars is a highly energetically demanding process, we have analyzed whether the energy status of the cell could control GAG production. AMP-activated protein kinase (AMPK) is the main ATP/AMP sensor of mammalian cells, and we mimicked an energy stress by treating human aortic smooth muscle cells (AoSMCs) with the AMPK activators 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside and metformin. Under these conditions, HA synthesis, but not that of the other GAGs, was greatly reduced. We confirmed the inhibitory effect of AMPK using a specific inhibitor and knock-out cell lines. We found that AMPK phosphorylated Thr-110 of human HAS2, which inhibits its enzymatic activity. In contrast, the other two HAS isoenzymes (HAS1 and HAS3) were not modified by the kinase. The reduction of HA decreased the ability of AoSMCs to proliferate, migrate, and recruit immune cells, thereby reducing the pro-atherosclerotic AoSMC phenotype. Interestingly, such effects were not recovered by treatment with exogenous HA, suggesting that AMPK can block the pro-atherosclerotic signals driven by HA by interaction with its receptors.


Asunto(s)
Aorta/metabolismo , Glucuronosiltransferasa/metabolismo , Ácido Hialurónico/biosíntesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Quinasas Activadas por AMP , Aorta/citología , Línea Celular , Movimiento Celular/fisiología , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glucuronosiltransferasa/genética , Humanos , Hialuronano Sintasas , Ácido Hialurónico/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología
17.
J Biol Chem ; 286(40): 34497-503, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21768115

RESUMEN

Smooth muscle cells (SMCs) have a pivotal role in cardiovascular diseases and are responsible for hyaluronan (HA) deposition in thickening vessel walls. HA regulates SMC proliferation, migration, and inflammation, which accelerates neointima formation. We used the HA synthesis inhibitor 4-methylumbelliferone (4-MU) to reduce HA production in human aortic SMCs and found a significant increase of apoptotic cells. Interestingly, the exogenous addition of HA together with 4-MU reduced apoptosis. A similar anti-apoptotic effect was observed also by adding other glycosaminoglycans and glucose to 4-MU-treated cells. Furthermore, the anti-apoptotic effect of HA was mediated by Toll-like receptor 4, CD44, and PI3K but not by ERK1/2.


Asunto(s)
Aorta/patología , Apoptosis , Glucosa/metabolismo , Glicosaminoglicanos/metabolismo , Ácido Hialurónico/farmacología , Himecromona/análogos & derivados , Miocitos del Músculo Liso/citología , Movimiento Celular , Proliferación Celular , Glicoproteínas/metabolismo , Humanos , Receptores de Hialuranos/biosíntesis , Himecromona/farmacología , Inflamación , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/metabolismo
18.
Glycobiology ; 22(3): 400-10, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038477

RESUMEN

Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Glucuronosiltransferasa/antagonistas & inhibidores , Himecromona/análogos & derivados , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas , Ácido Hialurónico/biosíntesis , Ácido Hialurónico/metabolismo , Himecromona/farmacología , Himecromona/uso terapéutico , Himecromona/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/tratamiento farmacológico , Cirrosis Hepática Experimental/patología , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C3H , Trasplante de Neoplasias , Tioacetamida , Carga Tumoral/efectos de los fármacos
19.
Methods Mol Biol ; 2303: 63-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626370

RESUMEN

Hyaluronan (HA) is a component of the extracellular matrix that is involved in many physiological and pathological processes. As HA modulates several functions (i.e., cell proliferation and migration, inflammation), its presence in the tissues can have positive or negative effects. HA synthases (HAS) are a family of three isoenzymes located on the plasma membrane that are responsible for the production of such polysaccharide and, therefore, their activity is critical to determine the accumulation of HA in tissues. Here, we describe a nonradioactive method to quantify the HAS enzymatic activity in crude cellular membrane preparation.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Membrana Celular , Matriz Extracelular , Receptores de Hialuranos , Hialuronano Sintasas , Ácido Hialurónico
20.
Matrix Biol ; 109: 140-161, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395387

RESUMEN

Hyaluronan (HA) is a ubiquitous extracellular matrix component playing a crucial role in the regulation of cell behaviors, including cancer. Aggressive breast cancer cells tend to proliferate, migrate and metastatize. Notably, triple-negative breast cancer cells lacking the expression of estrogen receptor (ER) as well as progesterone receptor and HER2 are more aggressive than ER-positive ones. As currently no targeted therapy is available for triple-negative breast cancer, the identification of novel therapeutic targets has a high clinical priority. In ER-negative cells, tumoral behavior can be reduced by inhibiting HA synthesis or silencing the enzymes involved in its metabolism, such as HA synthase 2 (HAS2). HAS2-AS1 is a long non-coding RNA belonging to the natural antisense transcript family which is known to favor HAS2 gene expression and HA synthesis, thus bolstering malignant progression in brain, ovary, and lung tumors. As the role of HAS2-AS1 has not yet been investigated in breast cancer, in this work we report that ER-positive breast cancers had lower HAS2-AS1 expression compared to ER-negative tumors. Moreover, the survival of patients with ER-negative tumors was higher when the expression of HAS2-AS1 was elevated. Experiments with ER-negative cell lines as MDA-MB-231 and Hs 578T revealed that the overexpression of either the full-length HAS2-AS1 or its exon 2 long or short isoforms alone, strongly reduced cell viability, migration, and invasion, whereas HAS2-AS1 silencing increased cell aggressiveness. Unexpectedly, in these ER-negative cell lines, HAS2-AS1 is involved neither in the regulation of HAS2 nor in HA deposition. Finally, transcriptome analysis revealed that HAS2-AS1 modulation affected several pathways, including apoptosis, proliferation, motility, adhesion, epithelial to mesenchymal transition, and signaling, describing this long non-coding RNA as an important regulator of breast cancer cells aggressiveness.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA