RESUMEN
Prescription opioids are a mainstay in the treatment of acute moderate to severe pain. However, chronic use leads to a host of adverse consequences including tolerance and opioid-induced hyperalgesia (OIH), leading to more complex treatment regimens and diminished patient compliance. Patients with OIH paradoxically experience exaggerated nociceptive responses instead of pain reduction after chronic opioid usage. The development of OIH and tolerance tend to occur simultaneously and, thus, present a challenge when studying the molecular mechanisms driving each phenomenon. We tested the hypothesis that a G protein-biased µ-opioid peptide receptor (MOPR) agonist would not induce symptoms of OIH, such as mechanical allodynia, following chronic administration. We observed that the development of opioid-induced mechanical allodynia (OIMA), a model of OIH, was absent in ß-arrestin1-/- and ß-arrestin2-/- mice in response to chronic administration of conventional opioids such as morphine, oxycodone and fentanyl, whereas tolerance developed independent of OIMA. In agreement with the ß-arrestin knockout mouse studies, chronic administration of TRV0109101, a G protein-biased MOPR ligand and structural analog of oliceridine, did not promote the development of OIMA but did result in drug tolerance. Interestingly, following induction of OIMA by morphine or fentanyl, TRV0109101 was able to rapidly reverse allodynia. These observations establish a role for ß-arrestins in the development of OIH, independent of tolerance, and suggest that the use of G protein-biased MOPR ligands, such as oliceridine and TRV0109101, may be an effective therapeutic avenue for managing chronic pain with reduced propensity for opioid-induced hyperalgesia.
Asunto(s)
Analgésicos Opioides/administración & dosificación , Proteínas de Unión al GTP/agonistas , Hiperalgesia/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Receptores Opioides mu/agonistas , Animales , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Proteínas de Unión al GTP/fisiología , Células HEK293 , Humanos , Hiperalgesia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor/métodos , Receptores Opioides mu/fisiologíaRESUMEN
The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and ß-arrestin (ßarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-ßarr2 fusion proteins with their respective molecular efficacies for activating Gq and ßarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and ßarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR.
Asunto(s)
Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Regulación Alostérica , Células HEK293 , Humanos , Ligandos , Proteínas Recombinantes de Fusión/metabolismo , TermodinámicaRESUMEN
In the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates ß-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023. Compared with saline controls, ANG II induced a significant increase in pCa50 and maximum Ca(2+)-activated myofilament tension but reduced the Hill coefficient (nH). TRV120023 increased maximum tension and pCa50, although to lesser extent than ANG II. In contrast to ANG II, TRV120023 increased nH. Losartan blocked the effects of ANG II on pCa50 and nH and reduced maximum tension below that of saline controls. ANG II + TRV120023 showed responses similar to those of TRV120023 alone; compared with ANG II + losartan, ANG II + TRV120023 preserved maximum tension and increased both pCa50 and cooperativity. Tropomyosin phosphorylation was lower in myofilaments from saline-treated hearts compared with the other groups. Phosphorylation of cardiac troponin I was significantly reduced in ANG II + TRV120023 and TRV120023 groups versus saline controls, and myosin-binding protein C phosphorylation at Ser(282) was unaffected by ANG II or losartan but significantly reduced with TRV120023 treatment compared with all other groups. Our data indicate that TRV120023-related promotion of ß-arrestin signaling and enhanced contractility involves a mechanism promoting the myofilament response to Ca(2+) via altered protein phosphorylation. Selective activation of ß-arrestin-dependent pathways may provide advantages over conventional AT1R blockers.
Asunto(s)
Arrestinas/metabolismo , Calcio/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Ventrículos Cardíacos/fisiopatología , Miofibrillas/efectos de los fármacos , Oligopéptidos/administración & dosificación , Angiotensina II , Animales , Cardiomegalia/inducido químicamente , Cardiotónicos/administración & dosificación , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Masculino , Contracción Miocárdica/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , beta-ArrestinasRESUMEN
The concept of ligand bias at G protein-coupled receptors broadens the possibilities for agonist activities and provides the opportunity to develop safer, more selective therapeutics. Morphine pharmacology in ß-arrestin-2 knockout mice suggested that a ligand that promotes coupling of the µ-opioid receptor (MOR) to G proteins, but not ß-arrestins, would result in higher analgesic efficacy, less gastrointestinal dysfunction, and less respiratory suppression than morphine. Here we report the discovery of TRV130 ([(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethyl})amine), a novel MOR G protein-biased ligand. In cell-based assays, TRV130 elicits robust G protein signaling, with potency and efficacy similar to morphine, but with far less ß-arrestin recruitment and receptor internalization. In mice and rats, TRV130 is potently analgesic while causing less gastrointestinal dysfunction and respiratory suppression than morphine at equianalgesic doses. TRV130 successfully translates evidence that analgesic and adverse MOR signaling pathways are distinct into a biased ligand with differentiated pharmacology. These preclinical data suggest that TRV130 may be a safer and more tolerable therapeutic for treating severe pain.
Asunto(s)
Analgésicos/farmacología , Proteínas de Unión al GTP/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Morfina/farmacología , Receptores Opioides mu/metabolismo , Sistema Respiratorio/efectos de los fármacos , Animales , Arrestinas/metabolismo , Línea Celular , Enfermedades Gastrointestinales/inducido químicamente , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/metabolismo , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Enfermedades Respiratorias/inducido químicamente , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/metabolismo , Transducción de Señal/efectos de los fármacos , Arrestina beta 2 , beta-ArrestinasRESUMEN
Seven-transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through ß-arrestins, whose recruitment to the activated receptor is regulated by G protein-coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal-regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT(1A)R) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)-based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well-established function in the desensitization of G-protein activation, GRK2 exerts a strong negative effect on ß-arrestin-dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2-dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT(1A)R, and HEK293 cells expressing other 7TMRs.
Asunto(s)
Arrestinas/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Proteínas de Unión al GTP/metabolismo , Modelos Biológicos , Transducción de Señal , Línea Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 3 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Riñón/citología , Riñón/embriología , Riñón/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , beta-ArrestinasRESUMEN
Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the ß-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics.
Asunto(s)
Fármacos Cardiovasculares/farmacología , Descubrimiento de Drogas , Terapia Molecular Dirigida/métodos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Fármacos Cardiovasculares/química , Humanos , Ligandos , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptores Adrenérgicos beta/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Nicotínicos/efectos de los fármacosRESUMEN
Pharmacological blockade of the ANG II type 1 receptor (AT1R) is a common therapy for treatment of congestive heart failure and hypertension. Increasing evidence suggests that selective engagement of ß-arrestin-mediated AT1R signaling, referred to as biased signaling, promotes cardioprotective signaling. Here, we tested the hypothesis that a ß-arrestin-biased AT1R ligand TRV120023 would confer cardioprotection in response to acute cardiac injury compared with the traditional AT1R blocker (ARB), losartan. TRV120023 promotes cardiac contractility, assessed by pressure-volume loop analyses, while blocking the effects of endogenous ANG II. Compared with losartan, TRV120023 significantly activates MAPK and Akt signaling pathways. These hemodynamic and biochemical effects were lost in ß-arrestin-2 knockout (KO) mice. In response to cardiac injury induced by ischemia reperfusion injury or mechanical stretch, pretreatment with TRV120023 significantly diminishes cell death compared with losartan, which did not appear to be cardioprotective. This cytoprotective effect was lost in ß-arrestin-2 KO mice. The ß-arrestin-biased AT1R ligand, TRV120023, has cardioprotective and functional properties in vivo, which are distinct from losartan. Our data suggest that this novel class of drugs may provide an advantage over conventional ARBs by supporting cardiac function and reducing cellular injury during acute cardiac injury.
Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arrestinas/metabolismo , Cardiotónicos/farmacología , Losartán/farmacología , Oligopéptidos/farmacología , Síndrome Coronario Agudo/metabolismo , Síndrome Coronario Agudo/patología , Enfermedad Aguda , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Arrestinas/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocardio/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Arrestina beta 2 , beta-ArrestinasRESUMEN
CCL19 and CCL21 are endogenous agonists for the seven-transmembrane receptor CCR7. They are equally active in promoting G protein stimulation and chemotaxis. Yet, we find that they result in striking differences in activation of the G protein-coupled receptor kinase (GRK)/ss-arrestin system. CCL19 leads to robust CCR7 phosphorylation and beta-arrestin2 recruitment catalyzed by both GRK3 and GRK6 whereas CCL21 activates GRK6 alone. This differential GRK activation leads to distinct functional consequences. Although each ligand leads to beta-arrestin2 recruitment, only CCL19 leads to redistribution of beta-arrestin2-GFP into endocytic vesicles and classical receptor desensitization. In contrast, these agonists are both capable of signaling through GRK6 and beta-arrestin2 to ERK kinases. Thus, this mechanism for "ligand bias" whereby endogenous agonists activate different GRK isoforms leads to functionally distinct pools of beta-arrestin.
Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Arrestinas/metabolismo , Línea Celular , Humanos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , ARN Interferente Pequeño , Receptores CCR7/metabolismo , Transducción de Señal , beta-ArrestinasRESUMEN
Seven transmembrane receptors (7TMRs), commonly referred to as G protein-coupled receptors, form a large part of the "druggable" genome. 7TMRs can signal through parallel pathways simultaneously, such as through heterotrimeric G proteins from different families, or, as more recently appreciated, through the multifunctional adapters, ß-arrestins. Biased agonists, which signal with different efficacies to a receptor's multiple downstream pathways, are useful tools for deconvoluting this signaling complexity. These compounds may also be of therapeutic use because they have distinct functional and therapeutic profiles from "balanced agonists." Although some methods have been proposed to identify biased ligands, no comparison of these methods applied to the same set of data has been performed. Therefore, at this time, there are no generally accepted methods to quantify the relative bias of different ligands, making studies of biased signaling difficult. Here, we use complementary computational approaches for the quantification of ligand bias and demonstrate their application to two well known drug targets, the ß2 adrenergic and angiotensin II type 1A receptors. The strategy outlined here allows a quantification of ligand bias and the identification of weakly biased compounds. This general method should aid in deciphering complex signaling pathways and may be useful for the development of novel biased therapeutic ligands as drugs.
Asunto(s)
Receptores de Superficie Celular/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Ligandos , Ensayo de Unión Radioligante , Receptor de Angiotensina Tipo 2/metabolismoRESUMEN
Beta-arrestins critically regulate G protein-coupled receptors (GPCRs), also known as seven-transmembrane receptors (7TMRs), both by inhibiting classical G protein signaling and by initiating distinct beta-arrestin-mediated signaling. The recent discovery of beta-arrestin-biased ligands and receptor mutants has allowed characterization of these independent "G protein-mediated" and "beta-arrestin-mediated" signaling mechanisms of 7TMRs. However, the molecular mechanisms underlying the dual functions of beta-arrestins remain unclear. Here, using an intramolecular BRET (bioluminescence resonance energy transfer)-based biosensor of beta-arrestin 2 and a combination of biased ligands and/or biased mutants of three different 7TMRs, we provide evidence that beta-arrestin can adopt multiple "active" conformations. Surprisingly, phosphorylation-deficient mutants of the receptors are also capable of directing similar conformational changes in beta-arrestin as is the wild-type receptor. This indicates that distinct receptor conformations induced and/or stabilized by different ligands can promote distinct and functionally specific conformations in beta-arrestin even in the absence of receptor phosphorylation. Our data thus highlight another interesting aspect of 7TMR signaling--i.e., functionally specific receptor conformations can be translated to downstream effectors such as beta-arrestins, thereby governing their functional specificity.
Asunto(s)
Arrestinas/química , Receptores Acoplados a Proteínas G/química , Arrestinas/genética , Arrestinas/metabolismo , Fenómenos Biofísicos , Biofisica , Técnicas Biosensibles , Células , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Fosforilación , Conformación Proteica , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Arrestina beta 2 , beta-ArrestinasRESUMEN
Recent evidence suggests that binding of agonist to its cognate receptor initiates not only classical G protein-mediated signaling, but also beta-arrestin-dependent signaling. One such beta-arrestin-mediated pathway uses the beta(1)-adrenergic receptor (beta(1)AR) to transactivate the EGFR. To determine whether beta-adrenergic ligands that do not activate G protein signaling (i.e., beta-blockers) can stabilize the beta(1)AR in a signaling conformation, we screened 20 beta-blockers for their ability to stimulate beta-arrestin-mediated EGFR transactivation. Here we show that only alprenolol (Alp) and carvedilol (Car) induce beta(1)AR-mediated transactivation of the EGFR and downstream ERK activation. By using mutants of the beta(1)AR lacking G protein-coupled receptor kinase phosphorylation sites and siRNA directed against beta-arrestin, we show that Alp- and Car-stimulated EGFR transactivation requires beta(1)AR phosphorylation at consensus G protein-coupled receptor kinase sites and beta-arrestin recruitment to the ligand-occupied receptor. Moreover, pharmacological inhibition of Src and EGFR blocked Alp- and Car-stimulated EGFR transactivation. Our findings demonstrate that Alp and Car are ligands that not only act as classical receptor antagonists, but can also stimulate signaling pathways in a G protein-independent, beta-arrestin-dependent fashion.
Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Alprenolol/farmacología , Arrestinas/metabolismo , Carbazoles/farmacología , Receptores ErbB/metabolismo , Propanolaminas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Carvedilol , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Enzimas/metabolismo , Clorhidrato de Erlotinib , Genes erbB-1/genética , Corazón/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , beta-ArrestinasRESUMEN
Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via beta-arrestin-mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family.
Asunto(s)
Arrestinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Activación Transcripcional/genética , Animales , Línea Celular , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , beta-ArrestinasRESUMEN
Biased G protein-coupled receptor ligands engage subsets of the receptor signals normally stimulated by unbiased agonists. However, it is unclear whether ligand bias can elicit differentiated pharmacology in vivo. Here, we describe the discovery of a potent, selective ß-arrestin biased ligand of the angiotensin II type 1 receptor. TRV120027 (Sar-Arg-Val-Tyr-Ile-His-Pro-D-Ala-OH) competitively antagonizes angiotensin II-stimulated G protein signaling, but stimulates ß-arrestin recruitment and activates several kinase pathways, including p42/44 mitogen-activated protein kinase, Src, and endothelial nitric-oxide synthase phosphorylation via ß-arrestin coupling. Consistent with ß-arrestin efficacy, and unlike unbiased antagonists, TRV120027 increased cardiomyocyte contractility in vitro. In rats, TRV120027 reduced mean arterial pressure, as did the unbiased antagonists losartan and telmisartan. However, unlike the unbiased antagonists, which decreased cardiac performance, TRV120027 increased cardiac performance and preserved cardiac stroke volume. These striking differences in vivo between unbiased and ß-arrestin biased ligands validate the use of biased ligands to selectively target specific receptor functions in drug discovery.
Asunto(s)
Angiotensina II/análogos & derivados , Angiotensina II/farmacología , Arrestinas/metabolismo , Presión Sanguínea/efectos de los fármacos , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Receptor de Angiotensina Tipo 1/agonistas , Transducción de Señal/efectos de los fármacos , Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Arrestinas/genética , Unión Competitiva , Línea Celular Tumoral , Interacciones Farmacológicas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/genética , Ratas , Receptor de Angiotensina Tipo 1/genética , Transducción de Señal/fisiología , Transfección , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología , beta-Arrestinas , Familia-src Quinasas/metabolismoRESUMEN
Signals transduced by kinases depend on the extent and duration of substrate phosphorylation. We generated genetically encoded fluorescent reporters for PKC activity that reversibly respond to stimuli activating PKC. Specifically, phosphorylation of the reporter expressed in mammalian cells causes changes in fluorescence resonance energy transfer (FRET), allowing real time imaging of phosphorylation resulting from PKC activation. Targeting of the reporter to the plasma membrane, where PKC is activated, reveals oscillatory phosphorylation in HeLa cells in response to histamine. Each oscillation in substrate phosphorylation follows a calcium oscillation with a lag of approximately 10 s. Novel FRET-based reporters for PKC translocation, phosphoinositide bisphosphate conversion to IP3, and diacylglycerol show that in HeLa cells the oscillatory phosphorylations correlate with Ca2+-controlled translocation of conventional PKC to the membrane without oscillations of PLC activity or diacylglycerol. However, in MDCK cells stimulated with ATP, PLC and diacylglycerol fluctuate together with Ca2+ and phosphorylation. Thus, specificity of PKC signaling depends on the local second messenger-controlled equilibrium between kinase and phosphatase activities to result in strict calcium-controlled temporal regulation of substrate phosphorylation.
Asunto(s)
Relojes Biológicos/genética , Membrana Celular/metabolismo , Células Eucariotas/enzimología , Genes Reporteros/genética , Proteína Quinasa C/metabolismo , Transducción de Señal/genética , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Relojes Biológicos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Membrana Celular/efectos de los fármacos , Diglicéridos/metabolismo , Diglicéridos/farmacología , Perros , Células Eucariotas/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Células HeLa , Histamina/farmacología , Humanos , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Fosfatidilinositoles/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Quinasa C/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Sistemas de Mensajero Secundario/genética , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismoRESUMEN
Headaches are highly disabling and are among the most common neurological disorders worldwide. Despite the high prevalence of headache, therapeutic options are limited. We recently identified the delta opioid receptor (DOR) as an emerging therapeutic target for migraine. In this study, we examined the effectiveness of a hallmark DOR agonist, SNC80, in disease models reflecting diverse headache disorders including: chronic migraine, post-traumatic headache (PTH), medication overuse headache by triptans (MOH), and opioid-induced hyperalgesia (OIH). To model chronic migraine C57BL/6J mice received chronic intermittent treatment with the known human migraine trigger, nitroglycerin. PTH was modeled by combining the closed head weight drop model with the nitroglycerin model of chronic migraine. For MOH and OIH, mice were chronically treated with sumatriptan or morphine, respectively. The development of periorbital and peripheral allodynia was observed in all four models; and SNC80 significantly inhibited allodynia in all cases. In addition, we also determined if chronic daily treatment with SNC80 would induce MOH/OIH, and we observed limited hyperalgesia relative to sumatriptan or morphine. Together, our results indicate that DOR agonists could be effective in multiple headache disorders, despite their distinct etiology, thus presenting a novel therapeutic target for headache.
Asunto(s)
Benzamidas/uso terapéutico , Trastornos de Cefalalgia/tratamiento farmacológico , Piperazinas/uso terapéutico , Receptores Opioides delta/agonistas , Animales , Benzamidas/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Trastornos de Cefalalgia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Morfina , Nitroglicerina , Piperazinas/efectos adversos , Receptores Opioides delta/uso terapéutico , SumatriptánRESUMEN
Trace amines are neurotransmitters whose role in regulating invertebrate physiology has been appreciated for many decades. Recent studies indicate that trace amines may also play a role in mammalian physiology by binding to a novel family of G protein-coupled receptors (GPCRs) that are found throughout the central nervous system. A major obstacle impeding the careful pharmacological characterization of trace amine associated receptors (TAARs) is their extremely poor membrane expression in model cell systems, and a molecular basis for this phenomenon has not been determined. In the present study, we show that the addition of an asparagine-linked glycosylation site to the N terminus of the human trace amine associated receptor 1 (TAAR1) is sufficient to enable its plasma membrane expression, and thus its pharmacological characterization with a novel cAMP EPAC (exchange protein directly activated by cAMP) protein based bioluminescence resonance energy transfer (BRET) biosensor. We applied this novel cAMP BRET biosensor to evaluate the activity of putative TAAR1 ligands. This study represents the first comprehensive investigation of the membrane-expressed human TAAR1 pharmacology. Our strategy to express TAARs and to identify their ligands using a cAMP BRET assay could provide a foundation for characterizing the functional role of trace amines in vivo and suggests a strategy to apply to groups of poorly expressing GPCRs that have remained difficult to investigate in model systems.
Asunto(s)
Técnicas Biosensibles , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dextroanfetamina/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Fenetilaminas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Transducción de Señal/efectos de los fármacos , Factores de TiempoRESUMEN
Seven-transmembrane receptors (7TMRs), the most common molecular targets of modern drug therapy, are critically regulated by beta-arrestins, which both inhibit classic G-protein signaling and initiate distinct beta-arrestin signaling. The interplay of G-protein and beta-arrestin signals largely determines the cellular consequences of 7TMR-targeted drugs. Until recently, a drug's efficacy for beta-arrestin recruitment was believed to be proportional to its efficacy for G-protein activities. This paradigm restricts 7TMR drug effects to a linear spectrum of responses, ranging from inhibition of all responses to stimulation of all responses. However, it is now clear that 'biased ligands' can selectively activate G-protein or beta-arrestin functions and thus elicit novel biological effects from even well-studied 7TMRs. Here, we discuss the current state of beta-arrestin-biased ligand research and the prospects for beta-arrestin bias as a therapeutic target. Consideration of ligand bias might have profound influences on the way scientists approach 7TMR-targeted drug discovery.
Asunto(s)
Arrestinas/farmacología , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Alostérica , Animales , Arrestinas/química , Arrestinas/metabolismo , Diseño de Fármacos , Humanos , Modelos Biológicos , Unión Proteica , Receptores Acoplados a Proteínas G/química , beta-ArrestinasRESUMEN
Opioid chemistry and biology occupy a pivotal place in the history of pharmacology and medicine. Morphine offers unmatched efficacy in alleviating acute pain, but is also associated with a host of adverse side effects. The advent of biased agonism at G protein-coupled receptors has expanded our understanding of intracellular signaling and highlighted the concept that certain ligands are able to differentially modulate downstream pathways. The ability to target one pathway over another has allowed for the development of biased ligands with robust clinical efficacy and fewer adverse events. In this review we summarize these concepts with an emphasis on biased mu opioid receptor pharmacology and highlight how far opioid pharmacology has evolved.
Asunto(s)
Analgésicos Opioides/farmacología , Dolor/tratamiento farmacológico , Receptores Opioides mu/agonistas , Analgésicos Opioides/efectos adversos , Animales , Diseño de Fármacos , Humanos , Ligandos , Morfina/efectos adversos , Morfina/farmacología , Dolor/fisiopatología , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
AIMS: Therapeutic approaches to treat familial dilated cardiomyopathy (DCM), which is characterized by depressed sarcomeric tension and susceptibility to Ca(2+)-related arrhythmias, have been generally unsuccessful. Our objective in the present work was to determine the effect of the angiotensin II type 1 receptor (AT1R) biased ligand, TRV120023, on contractility of hearts of a transgenic mouse model of familial DCM with mutation in tropomyosin at position 54 (TG-E54K). Our rationale is based on previous studies, which have supported the hypothesis that biased G-protein-coupled receptor ligands, signalling via ß-arrestin, increase cardiac contractility with no effect on Ca(2+) transients. Our previous work demonstrated that the biased ligand TRV120023 is able to block angiotensin-induced hypertrophy, while promoting an increase in sarcomere Ca(2+) response. METHODS AND RESULTS: We tested the hypothesis that the depression in cardiac function associated with DCM can be offset by infusion of the AT1R biased ligand, TRV120023. We intravenously infused saline, TRV120023, or the unbiased ligand, losartan, for 15 min in TG-E54K and non-transgenic mice to obtain left ventricular pressure-volume relations. Hearts were analysed for sarcomeric protein phosphorylation. Results showed that the AT1R biased ligand increases cardiac performance in TG-E54K mice in association with increased myosin light chain-2 phosphorylation. CONCLUSION: Treatment of mice with an AT1R biased ligand, acting via ß-arrestin signalling, is able to induce an increase in cardiac contractility associated with an increase in ventricular myosin light chain-2 phosphorylation. AT1R biased ligands may prove to be a novel inotropic approach in familial DCM.
Asunto(s)
Miosinas Cardíacas/metabolismo , Cardiomiopatía Dilatada/metabolismo , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/metabolismo , Oligopéptidos/metabolismo , Animales , Arrestinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Corazón/fisiopatología , Ligandos , Masculino , Ratones Transgénicos , Fosforilación , beta-ArrestinasRESUMEN
The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and no currently-available therapies have been shown to favorably affect outcomes. TRV027 is a novel biased ligand of the angiotensin-2 type 1 receptor that antagonizes angiotensin-stimulated G-protein activation while stimulating ß-arrestin. In animal models, these effects reduce afterload while increasing cardiac performance and maintaining stroke volume. In initial human studies, TRV027 appears to be hemodynamically active primarily in patients with activation of the renin-angiotensin-aldosterone system, a potentially attractive profile for an AHF therapeutic. BLAST-AHF is an international prospective, randomized, phase IIb, dose-ranging study that will randomize up to 500 AHF patients with systolic blood pressure ≥120 mm Hg and ≤200 mm Hg within 24 h of initial presentation to 1 of 3 doses of intravenous TRV027 (1, 5, or 25 mg/h) or matching placebo (1:1:1:1) for at least 48 h and up to 96 h. The primary endpoint is a composite of 5 clinical endpoints (dyspnea, worsening heart failure, length of hospital stay, 30-day rehospitalization, and 30-day mortality) combined using an average z-score. Secondary endpoints will include the assessment of dyspnea and change in amino-terminal pro-B-type natriuretic peptide. The BLAST-AHF study will assess the efficacy and safety of a novel biased ligand of the angiotensin-2 type 1 receptor in AHF.