RESUMEN
BACKGROUND: Neurophysiological studies recognized that Autism Spectrum Disorder (ASD) is associated with altered patterns of over- and under-connectivity. However, little is known about network organization in children with ASD in the early phases of development and its correlation with the severity of core autistic features. METHODS: The present study aimed at investigating the association between brain connectivity derived from MEG signals and severity of ASD traits measured with different diagnostic clinical scales, in a sample of 16 children with ASD aged 2 to 6 years. RESULTS: A significant correlation emerged between connectivity strength in cortical brain areas implicated in several resting state networks (Default mode, Central executive, Salience, Visual and Sensorimotor) and the severity of communication anomalies, social interaction problems, social affect problems, and repetitive behaviors. Seed analysis revealed that this pattern of correlation was mainly caused by global rather than local effects. CONCLUSIONS: The present evidence suggests that altered connectivity strength in several resting state networks is related to clinical features and may contribute to neurofunctional correlates of ASD. Future studies implementing the same method on a wider and stratified sample may further support functional connectivity as a possible biomarker of the condition.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Magnetoencefalografía , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Preescolar , Femenino , Niño , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Descanso/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , ConectomaRESUMEN
OBJECTIVE: Encephaloceles (ENCs) may cause clinical complications, including drug-resistant epilepsy that can be cured with epilepsy surgery. METHODS: We describe clinical, diagnostic, and neuropathological findings of 12 patients with temporal ENC and epilepsy evaluated for surgery and compare them with a control group of 26 temporal lobe epilepsy (TLE) patients. RESULTS: Six patients had unilateral and 6 bilateral temporal ENCs. Compared to TLEs, ENCs showed i) later epilepsy onset, ii) higher prevalence of psychiatric comorbidities, iii) no history of febrile convulsions, and iv) ictal semiology differences. Seven patients had MRI signs of gliosis, and 9 of intracranial hypertension. Interictal EEG analysis in ENCs demonstrated significant differences with controls: prominent activity in the beta/gamma frequency bands in frontal regions, interictal short sequences of low-voltage fast activity, and less frequent and more localized interictal epileptiform discharges. Ictal EEG patterns analyzed in 9 ENCs showed delayed and slower contralateral spread compared to TLEs. All ENCs that underwent surgery (7 lobectomies and 1 lesionectomy) are in Engel class I. Neuropathological examination revealed 4 patterns: herniated brain fragments, focal layer I distortion, white matter septa extending into the cortex, and altered gyral profile. CONCLUSIONS AND SIGNIFICANCE: The described peculiarities might help clinicians to suspect the presence of largely underdiagnosed ENCs.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Electroencefalografía/métodos , Encefalocele/complicaciones , Encefalocele/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Neuroimagen , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: Despite a growing understanding of disorders of consciousness following severe brain injury, the association between long-term impairment of consciousness, spontaneous brain oscillations, and underlying subcortical damage, and the ability of such information to aid patient diagnosis, remains incomplete. METHODS: Cross-sectional observational sample of 116 patients with a disorder of consciousness secondary to brain injury, collected prospectively at a tertiary center between 2011 and 2013. Multimodal analyses relating clinical measures of impairment, electroencephalographic measures of spontaneous brain activity, and magnetic resonance imaging data of subcortical atrophy were conducted in 2018. RESULTS: In the final analyzed sample of 61 patients, systematic associations were found between electroencephalographic power spectra and subcortical damage. Specifically, the ratio of beta-to-delta relative power was negatively associated with greater atrophy in regions of the bilateral thalamus and globus pallidus (both left > right) previously shown to be preferentially atrophied in chronic disorders of consciousness. Power spectrum total density was also negatively associated with widespread atrophy in regions of the left globus pallidus, right caudate, and in the brainstem. Furthermore, we showed that the combination of demographics, encephalographic, and imaging data in an analytic framework can be employed to aid behavioral diagnosis. CONCLUSIONS: These results ground, for the first time, electroencephalographic presentation detected with routine clinical techniques in the underlying brain pathology of disorders of consciousness and demonstrate how multimodal combination of clinical, electroencephalographic, and imaging data can be employed in potentially mitigating the high rates of misdiagnosis typical of this patient cohort.
Asunto(s)
Lesiones Encefálicas , Estado de Conciencia , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Estudios Transversales , Electroencefalografía , Humanos , Imagen por Resonancia Magnética/métodosRESUMEN
Spinocerebellar ataxias type 1 (SCA1) is an autosomal dominant disease usually manifesting in adulthood. We performed a prospective 1-year longitudinal study in 14 presymptomatic mutation carriers (preSCA1), 11 ataxic patients, and 21 healthy controls. SCA1 patients had a median disease duration of 6 years (range 2-16) and SARA score of 7 points (range 3.5-20). PreSCA1 had an estimated time before disease onset of 9.7 years (range 4-30), and no signs of ataxia. At baseline, SCA1 patients significantly differed from controls in SARA score (Scale for Assessment and Rating of Ataxia), cognitive tests, and structural MRI measures. Significant volume loss was found in cerebellum, brainstem, basal ganglia, and cortical thinning in frontal, temporal, and occipital regions. PreSCA1 did not differ from controls. At 1-year follow-up, SCA1 patients showed significant increase in SARA score, and decreased volume of cerebellum (- 0.6%), pons (- 5.5%), superior cerebellar peduncles (- 10.7%), and midbrain (- 3.0%). Signs of disease progression were also observed in preSCA1 subjects, with increased SARA score and reduced total cerebellar volume. Our exploratory study suggests that clinical scores and MRI measures provide valuable data to monitor and quantify the earliest changes associated with the preclinical and the symptomatic phases of SCA1 disease.
Asunto(s)
Ataxias Espinocerebelosas , Adulto , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Estudios Prospectivos , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genéticaRESUMEN
OBJECTIVES: To investigate the relationship between N20-P25 peak-to-peak amplitude (N20p-P25p) of somatosensory evoked potentials (SEPs) and the occurrence of abnormalities of the peripheral and/or central sensory pathways and of myoclonus/epilepsy, in 308 patients with increased SEPs amplitude from upper limb stimulation. METHODS: We compared cortical response (N20p-P25p) in different groups of patients identified by demographic, clinical, and neurophysiological factors and performed a cluster analysis for classifying the natural occurrence of subgroups of patients. RESULTS: No significant differences of N20p-P25p were found among different age-dependent groups, and in patients with or without PNS/CNS abnormalities of sensory pathways, while myoclonic/epileptic patients showed higher N20p-P25p than other groups. Cluster analysis identified four clusters of patients including myoclonus/epilepsy, central sensory abnormalities, peripheral sensory abnormalities, and absence of myoclonus and sensory abnormalities. CONCLUSIONS: Increased N20p-P25p prompts different possible pathophysiological substrates: larger N20p-P25p in patients with cortical myoclonus and/or epilepsy is likely sustained by strong cortical hyperexcitability, while milder increase of N20p-P25p could be underpinned by plastic cortical changes following abnormalities of sensory pathways, or degenerative process involving the cortex. SEPs increased in amplitude cannot be considered an exclusive hallmark of myoclonus/epilepsy. Indeed, in several neurological disorders, it may represent a sign of adaptive, plastic, and/or degenerative cortical changes.
Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Mioclonía , Electroencefalografía , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Nervio Mediano , Corteza Somatosensorial/fisiologíaRESUMEN
RATIONALE: Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS: Patients were recruited based on typical JME (nâ¯=â¯23) or JAE (nâ¯=â¯18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS: Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS: Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.
Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Mioclónica Juvenil , Preparaciones Farmacéuticas , Electroencefalografía , Epilepsia Tipo Ausencia/diagnóstico , Humanos , Epilepsia Mioclónica Juvenil/diagnóstico , Lóbulo Occipital , ConvulsionesRESUMEN
The present work aims at validating a Bayesian multi-dipole modeling algorithm (SESAME) in the clinical scenario consisting of localizing the generators of single interictal epileptiform discharges from resting state magnetoencephalographic recordings. We use the results of Equivalent Current Dipole fitting, performed by an expert user, as a benchmark, and compare the results of SESAME with those of two widely used source localization methods, RAP-MUSIC and wMNE. In addition, we investigate the relation between post-surgical outcome and concordance of the surgical plan with the cerebral lobes singled out by the methods. Unlike dipole fitting, the tested algorithms do not rely on any subjective channel selection and thus contribute towards making source localization more unbiased and automatic. We show that the two dipolar methods, SESAME and RAP-MUSIC, generally agree with dipole fitting in terms of identified cerebral lobes and that the results of the former are closer to the fitted equivalent current dipoles than those of the latter. In addition, for all the tested methods and particularly for SESAME, concordance with surgical plan is a good predictor of seizure freedom while discordance is not a good predictor of poor post-surgical outcome. The results suggest that the dipolar methods, especially SESAME, represent a reliable and more objective alternative to manual dipole fitting for clinical applications in the field of epilepsy surgery.
Asunto(s)
Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Teorema de Bayes , Mapeo Encefálico , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , MagnetoencefalografíaRESUMEN
PURPOSE: Structural brain imaging has revealed that damage to different brain regions may impair theory of mind (ToM) while functional imaging has shown that distributed neural circuits are activated by ToM and empathy. However, the coherence of the electroencephalogram (EEG) frequencies in a definite time span may change during these processes, indicating different neurophysiological correlates. This study evaluated the changes of EEG coherence during ToM tasks in comparison with Empathy, Physical causality, and baseline conditions, aiming to determine the neurophysiological correlates of ToM. METHODS: Sixteen healthy adults underwent a visual activation paradigm using 30 comic strips concerning ToM, Empathy, or Physical causality during EEG recording. The interhemispheric coherence was estimated using a bivariate autoregressive (AR) parametric model. The coherence spectra were analyzed in the alpha, beta, and gamma frequency EEG bands. RESULTS: Coherence analysis taking all of the responses showed that in the gamma band, in comparison with the Empathy, Physical causality, and baseline conditions, ToM was associated with significantly higher peaks between the frontal and parietal areas in the right hemisphere and, in comparison with the Physical causality and baseline conditions, in the left hemisphere. Analysis taking the correct responses confirmed these results. CONCLUSIONS: In healthy adults, ToM processes are associated with immediate specific changes of brain connectivity, as expressed by high cortical coherence within the right frontal and parietal areas. These previously unexplored aspects indicate an online involvement of the right hemisphere networks in normal ToM. In patients with epilepsy, the study of EEG coherence during specific tasks may help determine the neural dysfunctions associated with impaired ToM. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan".
Asunto(s)
Encéfalo/fisiología , Empatía/fisiología , Teoría de la Mente/fisiología , Adulto , Mapeo Encefálico/métodos , Electroencefalografía , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Conducta Social , Percepción SocialRESUMEN
OBJECTIVE: The objective of this study was to explore the short-term effects of repetitive transcranial magnetic stimulation (rTMS) on action myoclonus. METHODS: Nine patients with Unverricht-Lundborg (EPM1) progressive myoclonus epilepsy type underwent two series of 500 stimuli at 0.3Hz through round coil twice a day for five consecutive days. Clinical and neurophysiological examinations were performed two hours before starting the first rTMS session and two hours after the end of the last rTMS session. RESULTS: Eight patients completed the protocol; one discontinued because of a transient increase in spontaneous jerks. The unified myoclonus rating scale indicated a 25% reduction in posttreatment myoclonus with action score associated with an increase in the cortical motor threshold and lengthening of the cortical silent period (CSP). The decrease in the myoclonus with action scores correlated with the prolongation of CSP. CONCLUSIONS: Repetitive transcranial magnetic stimulation can be safely used in patients with EPM1, improves action myoclonus, and partially restores deficient cortical inhibition.
Asunto(s)
Epilepsias Mioclónicas/terapia , Corteza Motora/fisiopatología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto JovenRESUMEN
EPM1 (epilepsy, progressive myoclonic 1; Unverricht-Lundborg disease, OMIM #254800) is the most frequent form of progressive myoclonus epilepsy. Previous findings have suggested that its pathophysiology mainly involves the cerebellum, but the evaluation of cerebellar dysfunction is still unsatisfactory. The aim of this study was to assess the structural and functional involvement of the cerebellum in EPM1. We used voxel-based morphometry and spatially unbiased infra-tentorial template analyses of structural magnetic resonance imaging (MRI) scans, and functional MRI (fMRI) scans during block and event-related go/no-go motor tasks to study 13 EPM1 patients with mild to moderate myoclonus. We compared the results with those obtained in 12 age-matched healthy controls (HCs) and in 12 patients with hereditary spinocerebellar ataxia (SCA). Structural analyses revealed different patterns of atrophic changes in the EPM1 and SCA patients: in the former, they involved both cerebrum and cerebellum but, in the latter, only the cerebellum. During fMRI, block and event-related go/no-go tasks similarly activated the cerebellum and cerebrum in the EPM1 patients and HCs, whereas both tasks revealed much less cerebellar activation in the SCA patients than in the other two groups. Volumetric evaluation of the EPM1 patients showed that the cerebellum seemed to be marginally involved in a widespread atrophic process, and fMRI showed that it was not functionally impaired during motor tasks.
Asunto(s)
Cerebelo/diagnóstico por imagen , Mioclonía/diagnóstico por imagen , Síndrome de Unverricht-Lundborg/diagnóstico por imagen , Adulto , Atrofia , Estudios de Casos y Controles , Cerebelo/patología , Cerebelo/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mioclonía/etiología , Mioclonía/fisiopatología , Síndrome de Unverricht-Lundborg/complicaciones , Síndrome de Unverricht-Lundborg/fisiopatologíaRESUMEN
BACKGROUND: To explore the cortical network sustaining action myoclonus and to found markers of the resulting functional impairment, we evaluated the distribution of the cortico-muscular coherence (CMC) and the frequency of coherent cortical oscillations with magnetoencephalography (MEG). All patients had EPM1 (Unverricht-Lundborg) disease known to present with prominent and disabling movement-activated myoclonus. METHODS: Using autoregressive models, we evaluated CMC on MEG sensors grouped in regions of interests (ROIs) above the main cortical areas. The movement was a repeated sustained isometric extension of the right hand and right foot. We compared the data obtained in 10 EPM1 patients with those obtained in 10 age-matched controls. RESULTS: As expected, CMC in beta band was significantly higher in EPM1 patients compared to controls in the ROIs exploring the sensorimotor cortex, but, it was also significantly higher in adjacent ROIs ipsilateral and contralateral to the activated limb. Moreover, the beta-CMC peak occurred at frequencies significantly slower and more stable frequencies in EPM1 patients with respect to controls. The frequency of the beta-CMC peak inversely correlated with the severity of myoclonus. CONCLUSIONS: the high and spatially extended beta-CMC peaking in a restricted range of low-beta frequencies in EPM1 patients, suggest that action myoclonus may result not only from an enhanced local synchronization but also from a specific oscillatory activity involving an expanded neuronal pool. The significant relationship between beta-CMC peak frequency and the severity of the motor impairment can represent a useful neurophysiological marker for the patients' evaluation and follow-up.
Asunto(s)
Mioclonía/fisiopatología , Síndrome de Unverricht-Lundborg/fisiopatología , Adulto , Anciano , Estudios de Casos y Controles , Electromiografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Reclutamiento Neurofisiológico , Adulto JovenRESUMEN
Introduction: To investigate cortical network changes using Magnetoencephalography (MEG) signals in Parkinson's disease (PD) patients undergoing Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy. Methods: We evaluated the MEG signals in 16 PD patients with drug-refractory tremor before and after 12-month from MRgFUS unilateral lesion of the ventralis intermediate nucleus (Vim) of the thalamus contralateral to the most affected body side. We recorded patients 24 h before (T0) and 24 h after MRgFUS (T1). We analyzed signal epochs recorded at rest and during the isometric extension of the hand contralateral to thalamotomy. We evaluated cortico-muscular coherence (CMC), the out-strength index from non-primary motor areas to the pre-central area and connectivity indexes, using generalized partial directed coherence. Statistical analysis was performed using RMANOVA and post hoct-tests. Results: Most changes found at T1 compared to T0 occurred in the beta band and included: (1) a re-adjustment of CMC distribution; (2) a reduced out-strength from non-primary motor areas toward the precentral area; (3) strongly reduced clustering coefficient values. These differences mainly occurred during motor activation and with few statistically significant changes at rest. Correlation analysis showed significant relationships between changes of out-strength and clustering coefficient in non-primary motor areas and the changes in clinical scores. Discussion: One day after MRgFUS thalamotomy, PD patients showed a topographically reordered CMC and decreased cortico-cortical flow, together with a reduced local connection between different nodes. These findings suggest that the reordered cortico-muscular and cortical-networks in the beta band may represent an early physiological readjustment related to MRgFUS Vim lesion.
RESUMEN
OBJECTIVE: We assessed the Transcranial Electrical Stimulation (TES)-induced Corticobulbar-Motor Evoked Potentials (Cb-MEPs) evoked from Orbicularis Oculi (Oc) and Orbicularis Oris (Or) muscles with FCC5h/FCC6h-Mz, C3/C4-Cz and C5/C6/-Cz stimulation, during IntraOperative NeuroMonitoring (IONM) in 30 patients who underwent skull-base surgery. METHODS: before (T0) and after (T1) the surgery, we compared the peak-to-peak amplitudes of Cb-MEPs obtained from TES with C3/C4-Cz, C5/C6-Cz and FCC5h/FCC6h-Mz. Then, we compared the response category (present, absent and peripheral) related to different montages. Finally, we classified the Cb-MEPs data from each patient for concordance with clinical outcome and we assessed the diagnostic measures for Cb-MEPs data obtained from FCC5h/FCC6h-Mz, C3/C4-Cz and C5/C6-Cz TES stimulation. RESULTS: Both at T0 and T1, FCC5h/FCC6h-Mz stimulation evoked larger Cb-MEPs than C3/C4-Cz, less peripheral responses from direct activation of facial nerve than C5/C6-Cz. FCC5h/FCC6h-Mz stimulation showed the best accuracy and specificity of Cb-MEPs for clinical outcomes. CONCLUSIONS: FCC5h/FCC6h-Mz stimulation showed the best performances for monitoring the facial nerve functioning, maintaining excellent diagnostic measures even at low stimulus voltages. SIGNIFICANCE: We demonstrated that FCC5h/FCC6h-Mz TES montage for Cb-MEPs in IONM has good accuracy in predicting the post-surgery outcome of facial nerve functioning.
RESUMEN
OBJECTIVE: Familial Adult Myoclonic Epilepsy (FAME) presents with action-activated myoclonus, often associated with epilepsy, sharing various features with Progressive Myoclonic Epilepsy (PMEs), but with slower course and limited motor disability. We aimed our study to identify measures suitable to explain the different severity of FAME2 compared to EPM1, the most common PME, and to detect the signature of the distinctive brain networks. METHODS: We analyzed the EEG-EMG coherence (CMC) during segmental motor activity and indexes of connectivity in the two patient groups, and in healthy subjects (HS). We also investigated the regional and global properties of the network. RESULTS: In FAME2, differently from EPM1, we found a well-localized distribution of beta-CMC and increased betweenness-centrality (BC) on the sensorimotor region contralateral to the activated hand. In both patient groups, compared to HS, there was a decline in the network connectivity indexes in the beta and gamma band, which was more obvious in FAME2. CONCLUSIONS: In FAME2, better localized CMC and increased BC in comparison with EPM1 patients could counteract the severity and the spreading of the myoclonus. Decreased indexes of cortical integration were more severe in FAME2. SIGNIFICANCE: Our measures correlated with different motor disabilities and identified distinctive brain network impairments.
Asunto(s)
Personas con Discapacidad , Epilepsias Mioclónicas , Trastornos Motores , Epilepsias Mioclónicas Progresivas , Mioclonía , Síndrome de Unverricht-Lundborg , Humanos , Adulto , Electroencefalografía , Electromiografía , Epilepsias Mioclónicas Progresivas/genética , EncéfaloRESUMEN
The presence of involuntary, non-functional jaw muscle activity (NFJMA) has not yet been assessed in patients with disorders of consciousness (DOC), although the presence of bruxism and other forms of movement disorders involving facial muscles is probably more frequent than believed. In this work, we evaluated twenty-two prolonged or chronic DOC patients with a long-lasting polygraphic recording to verify NFJMA occurrence and assess its neurophysiological patterns in this group of patients. A total of 5 out of 22 patients showed the presence of significant NFJMA with electromyographic patterns similar to what can be observed in non-DOC patients with bruxism, thus suggesting a disinhibition of masticatory motor nuclei from the cortical control. On the other hand, in two DOC patients, electromyographic patterns advised for the presence of myorhythmia, thus suggesting a brainstem/diencephalic involvement. Functional, non-invasive tools such as long-lasting polygraphic recordings should be extended to a larger sample of patients, since they are increasingly important in revealing disorders potentially severe and impacting the quality of life of DOC patients.
RESUMEN
PURPOSE: Photosensitive epilepsy (PSE) is the most common form of reflex epilepsy presenting with electroencephalography (EEG) paroxysms elicited by intermittent photic stimulation (IPS). To investigate whether the neuronal network undergoes dynamic changes before and during the transition to an EEG epileptic discharge, we estimated EEG connectivity patterns in photosensitive (PS) patients with idiopathic generalized epilepsy. METHODS: EEG signals were evaluated under resting conditions and during 14 Hz IPS, a frequency that consistently induces photoparoxysmal responses (PPRs) in PS patients. Partial directed coherence (PDC), a linear measure of effective connectivity based on multivariate autoregressive models, was used in 10 PS patients and 10 controls. Anterior versus posterior (F3, F4, C3, C4, and P3, P4, O1, O2) and interhemispheric connectivity patterns (F4, C4, P4, O2, and F3, C3, P3, O1) were estimated with focus on beta and gamma band activity. KEY FINDINGS: PDC analysis revealed an enhanced connectivity pattern in terms of both the number and strength of outflow connections in the PS patient group. Under resting condition, the greater connectivity in the PS patients occurred in the beta band, whereas it mainly involved the gamma band during IPS (i.e., the frequencies ranging from 40-60 Hz that include the higher harmonics of the stimulus frequency). Both at rest and during IPS, the differences between the PS patients and controls were due primarily to clearly increased connectivity involving the anterior cortical regions. SIGNIFICANCE: Our findings indicate that PS patients are characterised by abnormal EEG hyperconnectivity, primarily involving the anterior cortical regions under resting conditions and during IPS. This suggests that, even if the occipital cortical regions are the recipient zone of the stimulus and probably hyperexcitable, the anterior cortical areas are prominently involved in generating the hypersynchronization underlying the spike-and wave discharges elicited by IPS.
Asunto(s)
Epilepsia Refleja/fisiopatología , Vías Nerviosas/fisiopatología , Electroencefalografía , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Adulto JovenRESUMEN
PURPOSE: To classify the grade of antiepileptic drug (AED) resistance in a cohort of patients with focal epilepsies, to recognize the risk factors for AED resistance, and to estimate the helpfulness of "new-generation" AEDs. METHODS: We included 1,155 adults with focal epilepsies who were observed consecutively after 1990 and followed regularly at two epilepsy centers. We systematically collected the clinical, diagnostic, and therapeutic data using a custom-written database. We classified the patients as seizure-free or AED resistant according to the International League Against Epilepsy (ILAE) criteria, and we evaluated the risk factors associated with AED resistance using logistic regression analysis. We further grouped AED-resistant patients in different grades (I, II, and III) according to the number of AEDs already tried as proposed by Perucca. KEY FINDINGS: AED resistance occurred in 57.8% of the 729 patients with symptomatic focal epilepsies and was positively associated with electroencephalography (EEG) abnormalities, seizure type, and the presence of mesial temporal sclerosis. Among 426 patients without detectable causes, the percentage of AED resistance was significantly lower (39.2%) and correlated with EEG abnormalities and psychiatric symptoms. Among AED-resistant patients, the majority (64.6%) had tried three or more AEDs, which fit the more severe grade III proposed by Perucca. Among seizure-free patients, more than one-half (57%) needed to try two or more AEDs before reaching seizure control (14.9% needed three or more AEDs). Furthermore, among seizure-free patients who could be previously classified as resistant to two or more AEDs, 52.2% reached seizure freedom while receiving treatment with "new generation" AEDs. SIGNIFICANCE: The ILAE classification of AED resistance, as well the graded classification proposed by Perucca, was easily exploitable in our patients, although these classifications systems appear to have a limited value in predicting seizure outcome. Actually, a small but not negligible percentage of patients reached seizure freedom after trying several AEDs (including "new" AEDs), suggesting repeated trials may be necessary for seizure control.
Asunto(s)
Anticonvulsivantes/efectos adversos , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Adulto , Anticonvulsivantes/clasificación , Estudios de Cohortes , Bases de Datos Bibliográficas/estadística & datos numéricos , Resistencia a Medicamentos/efectos de los fármacos , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Resultado del TratamientoRESUMEN
Current literature supports the notion that the recognition of objects, when visually presented, is sub-served by neural structures different from those responsible for the semantic processing of their nouns. However, embodiment foresees that processing observed objects and their verbal labels should share similar neural mechanisms. In a combined behavioral and MEG study, we compared the modulation of motor responses and cortical rhythms during the processing of graspable natural objects and tools, either verbally or pictorially presented. Our findings demonstrate that conveying meaning to an observed object or processing its noun similarly modulates both motor responses and cortical rhythms; being natural graspable objects and tools differently represented in the brain, they affect in a different manner both behavioral and MEG findings, independent of presentation modality. These results provide experimental evidence that neural substrates responsible for conveying meaning to objects overlap with those where the object is represented, thus supporting an embodied view of semantic processing.
RESUMEN
There is experimental evidence that the brain systems involved in action execution also play a role in action observation and understanding. Recently, it has been suggested that the sensorimotor system is also involved in language processing. Supporting results are slower response times and weaker motor-related MEG Beta band power suppression in semantic decision tasks on single action verbs labels when the stimulus and the motor response involve the same effector. Attenuated power suppression indicates decreased cortical excitability and consequent decreased readiness to act. The embodied approach forwards that the simultaneous involvement of the sensorimotor system in the processing of the linguistic content and in the planning of the response determines this language-motor interference effect. Here, in a combined behavioral and MEG study we investigated to what extent the processing of actions visually presented (i.e., pictures of actions) and verbally described (i.e., verbs in written words) share common neural mechanisms. The findings demonstrated that, whether an action is experienced visually or verbally, its processing engages the sensorimotor system in a comparable way. These results provide further support to the embodied view of semantic processing, suggesting that this process is independent from the modality of presentation of the stimulus, including language.
RESUMEN
OBJECTIVE: Drug-resistant essential tremor (ET) can be treated by Magnetic-Resonance-guided Focused-Ultrasound (MRgFUS) targeted to thalamic ventralis-intermediate nucleus (ViM). We are presenting the results obtained in ET patients by evaluating the cortico-muscular coherence (CMC) and the out-strength among cortical areas. METHODS: We recorded MEG-EMG signals in 16 patients with predominant tremor on the right upper limb. The examination was performed the day before MRgFUS (T0) treatment, 24 hours (T1), and 3-months (T2) after lesioning the left ViM. Normalized CMC (nCMC) and cortico-cortical out-strength among cortical areas were assessed during isometric extension of the right hand. RESULTS: According to the Essential Tremor Rating Assessment Scale, 13 of 16 patients were considered responders. At T1, in the beta-band, nCMC increased in the left hemisphere, namely in the areas directly involved in motor functions. At T2, the nCMC in non-motor areas decreased and the out-strength from other examined cortical areas toward the left motor-area decreased. CONCLUSIONS: In patients positively responding to MRgFUS, the CMC increased in the motor-area of the treated hemisphere immediately after the treatment, while the reorganization of CMC and cortico-cortical out-strength toward the cortical motor area occurred with a delay. SIGNIFICANCE: The effective treatment with MRgFUS corresponds with a readjustment of the CMC and of the communication between cortical areas.