Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 27(7): e14461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953253

RESUMEN

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Variación Genética , Animales
2.
BMC Geriatr ; 24(1): 66, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229025

RESUMEN

BACKGROUND: It is important that healthcare professionals recognise cognitive dysfunction in hospitalised older patients in order to address associated care needs, such as enhanced involvement of relatives and extra cognitive and functional support. However, studies analysing medical records suggest that healthcare professionals have low awareness of cognitive dysfunction in hospitalised older patients. In this study, we investigated the prevalence of cognitive dysfunction in hospitalised older patients, the percentage of patients in which cognitive dysfunction was recognised by healthcare professionals, and which variables were associated with recognition. METHODS: A multicentre, nationwide, cross-sectional observational study was conducted on a single day using a flash mob study design in thirteen university and general hospitals in the Netherlands. Cognitive function was assessed in hospitalised patients aged ≥ 65 years old, who were admitted to medical and surgical wards. A Mini-Cog score of < 3 out of 5 indicated cognitive dysfunction. The attending nurses and physicians were asked whether they suspected cognitive dysfunction in their patient. Variables associated with recognition of cognitive dysfunction were assessed using multilevel and multivariable logistic regression analyses. RESULTS: 347 of 757 enrolled patients (46%) showed cognitive dysfunction. Cognitive dysfunction was recognised by attending nurses in 137 of 323 patients (42%) and by physicians in 156 patients (48%). In 135 patients (42%), cognitive dysfunction was not recognised by either the attending nurse or physician. Recognition of cognitive dysfunction was better at a lower Mini-Cog score, with the best recognition in patients with the lowest scores. Patients with a Mini-Cog score < 3 were best recognised in the geriatric department (69% by nurses and 72% by physicians). CONCLUSION: Cognitive dysfunction is common in hospitalised older patients and is poorly recognised by healthcare professionals. This study highlights the need to improve recognition of cognitive dysfunction in hospitalised older patients, particularly in individuals with less apparent cognitive dysfunction. The high proportion of older patients with cognitive dysfunction suggests that it may be beneficial to provide care tailored to cognitive dysfunction for all hospitalised older patients.


Asunto(s)
Disfunción Cognitiva , Delirio , Humanos , Anciano , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/complicaciones , Pacientes , Hospitalización
3.
J Exp Biol ; 225(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417009

RESUMEN

Closely related species are expected to diverge in foraging strategy, reflecting the evolutionary drive to optimize foraging performance. The most speciose cetacean genus, Mesoplodon, comprises beaked whales with little diversity in external morphology or diet, and overlapping distributions. Moreover, the few studied species of beaked whales (Ziphiidae) show very similar foraging styles with slow, energy-conserving movement during long, deep foraging dives. This raises the question of what factors drive their speciation. Using data from animal-attached tags and aerial imagery, we tested the hypothesis that two similar-sized mesoplodonts, Sowerby's (Mesoplodon bidens) and Blainville's (Mesoplodon densirostris) beaked whales, exploit a similar low-energy niche. We show that, compared with the low-energy strategist Blainville's beaked whale, Sowerby's beaked whale lives in the fast lane. While targeting a similar mesopelagic/bathypelagic foraging zone, they consistently swim and hunt faster, perform shorter deep dives, and echolocate at a faster rate with higher frequency clicks. Further, extensive near-surface travel between deep dives challenges the interpretation of beaked whale shallow inter-foraging dives as a management strategy for decompression sickness. The distinctively higher frequency echolocation clicks do not hold apparent foraging benefits. Instead, we argue that a high-speed foraging style influences dive duration and echolocation behaviour, enabling access to a distinct prey population. Our results demonstrate that beaked whales exploit a broader diversity of deep-sea foraging and energetic niches than hitherto suspected. The marked deviation of Sowerby's beaked whales from the typical ziphiid foraging strategy has potential implications for their response to anthropogenic sounds, which appears to be strongly behaviourally driven in other ziphiids.


Asunto(s)
Ecolocación , Ballenas , Acústica , Animales , Ecolocación/fisiología , Movimiento , Natación , Ballenas/fisiología
4.
J Exp Biol ; 225(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234874

RESUMEN

Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.


Asunto(s)
Motivación , Ballenas , Animales , Tamaño Corporal , Natación
5.
Anim Cogn ; 25(2): 287-296, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34406542

RESUMEN

The detection and use of emitters' signals by unintended receivers, i.e., eavesdropping, represents an important and often low-cost way for animals to gather information from their environment. Acoustic eavesdropping can be a key driver in mediating intra- and interspecific interactions (e.g., cooperation, predator-prey systems), specifically in species such as cetaceans that use sound as a primary sensory modality. While most cetacean species produce context-specific sounds, little is known about the use of those sounds by potential conspecific eavesdroppers. We experimentally tested the hypothesis that a social cetacean, Risso's dolphin (Grampus griseus), is able to gather biologically relevant information by eavesdropping on conspecific sounds. We conducted playback experiments on free-ranging dolphins using three context-specific sounds stimuli and monitored their horizontal movement using visual or airborne focal follow observations. We broadcasted natural sequences of conspecific foraging sounds potentially providing an attractive dinner bell signal (n = 7), male social sounds simulating a risk of forthcoming agonistic interaction (n = 7) and female-calf social sounds representing no particularly threatening context (n = 7). We developed a quantitative movement response score and tested whether animals changed their direction of horizontal movement towards or away from the playback source. Dolphins approached the foraging and the social female-calf sounds whereas they avoided the social male sounds. Hence, by acoustically eavesdropping on conspecifics, dolphins can discriminate between social and behavioural contexts and anticipate potential threatening or beneficial situations. Eavesdropping and the ensuing classification of 'friend or foe' can thus shape intra-specific social interactions in cetaceans.


Asunto(s)
Delfines , Acústica , Animales , Femenino , Masculino
6.
J Exp Biol ; 223(Pt 3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31822550

RESUMEN

Toothed whales have evolved flexible biosonar systems to find, track and capture prey in diverse habitats. Delphinids, phocoenids and iniids adjust inter-click intervals and source levels gradually while approaching prey. In contrast, deep-diving beaked and sperm whales maintain relatively constant inter-click intervals and apparent output levels during the approach followed by a rapid transition into the foraging buzz, presumably to maintain a long-range acoustic scene in a multi-target environment. However, it remains unknown whether this rapid biosonar adjustment strategy is shared by delphinids foraging in deep waters. To test this, we investigated biosonar adjustments of a deep-diving delphinid, the Risso's dolphin (Grampus griseus). We analyzed inter-click interval and apparent output level adjustments recorded from sound recording tags to quantify in situ sensory adjustment during prey capture attempts. Risso's dolphins did not follow typical (20logR) biosonar adjustment patterns seen in shallow-water species, but instead maintained stable repetition rates and output levels up to the foraging buzz. Our results suggest that maintaining a long-range acoustic scene to exploit complex, multi-target prey layers is a common strategy amongst deep-diving toothed whales. Risso's dolphins transitioned rapidly into the foraging buzz just like beaked whales during most foraging attempts, but employed a more gradual biosonar adjustment in a subset (19%) of prey approaches. These were characterized by higher speeds and minimum specific acceleration, indicating higher prey capture efforts associated with evasive prey. Thus, tracking and capturing evasive prey using biosonar may require a more gradual switch between multi-target echolocation and single-target tracking.


Asunto(s)
Delfines/fisiología , Ecolocación , Conducta Predatoria , Acústica , Animales , Océano Atlántico , Buceo , Portugal , Espectrografía del Sonido
7.
J Exp Biol ; 223(Pt 10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32321748

RESUMEN

Group-living animals must communicate to stay in contact. In long-finned pilot whales, there is a trade-off between the benefits of foraging individually at depth and the formation of tight social groups at the surface. Using theoretical modelling and empirical data of tagged pairs within a group, we examined the potential of pilot whale social calls to reach dispersed group members during foraging periods. Both theoretical predictions and empirical data of tag pairs showed a potential for communication between diving and non-diving group members over separation distances up to 385 m (empirical) and 1800 m (theoretical). These distances match or exceed pilot whale dive depths recorded across populations. Call characteristics and environmental characteristics were analysed to investigate determinants of call detectability. Longer calls with a higher sound pressure level (SPL) that were received in a quieter environment were more often detected than their shorter, lower SPL counterparts within a noisier environment. In a noisier environment, calls were louder and had a lower peak frequency, indicating mechanisms for coping with varying conditions. However, the vulnerability of pilot whales to anthropogenic noise is still of concern as the ability to cope with increasing background noise may be limited. Our study shows that combining propagation modelling and actual tag recordings provides new insights into the communicative potential for social calls in orientation and reunion with group members for deep-diving pilot whales.


Asunto(s)
Ballena de Aleta , Calderón , Animales , Vocalización Animal
8.
J Exp Biol ; 222(Pt 20)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31558588

RESUMEN

The scale dependence of locomotor factors has long been studied in comparative biomechanics, but remains poorly understood for animals at the upper extremes of body size. Rorqual baleen whales include the largest animals, but we lack basic kinematic data about their movements and behavior below the ocean surface. Here, we combined morphometrics from aerial drone photogrammetry, whale-borne inertial sensing tag data and hydrodynamic modeling to study the locomotion of five rorqual species. We quantified changes in tail oscillatory frequency and cruising speed for individual whales spanning a threefold variation in body length, corresponding to an order of magnitude variation in estimated body mass. Our results showed that oscillatory frequency decreases with body length (∝length-0.53) while cruising speed remains roughly invariant (∝length0.08) at 2 m s-1 We compared these measured results for oscillatory frequency against simplified models of an oscillating cantilever beam (∝length-1) and an optimized oscillating Strouhal vortex generator (∝length-1). The difference between our length-scaling exponent and the simplified models suggests that animals are often swimming non-optimally in order to feed or perform other routine behaviors. Cruising speed aligned more closely with an estimate of the optimal speed required to minimize the energetic cost of swimming (∝length0.07). Our results are among the first to elucidate the relationships between both oscillatory frequency and cruising speed and body size for free-swimming animals at the largest scale.


Asunto(s)
Natación/fisiología , Ballenas/fisiología , Animales , Análisis de Regresión , Especificidad de la Especie , Ballenas/anatomía & histología
9.
Anim Cogn ; 22(5): 863-882, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31230140

RESUMEN

Killer whales (KW) may be predators or competitors of other cetaceans. Since their foraging behavior and acoustics differ among populations ('ecotypes'), we hypothesized that other cetaceans can eavesdrop on KW sounds and adjust their behavior according to the KW ecotype. We performed playback experiments on long-finned pilot whales (Globicephala melas) in Norway using familiar fish-eating KW sounds (fKW) simulating a sympatric population that might compete for foraging areas, unfamiliar mammal-eating KW sounds (mKW) simulating a potential predator threat, and two control sounds. We assessed behavioral responses using animal-borne multi-sensor tags and surface visual observations. Pilot whales barely changed behavior to a broadband noise (CTRL-), whereas they were attracted and exhibited spyhops to fKW, mKW, and to a repeated-tonal upsweep signal (CTRL+). Whales never stopped nor started feeding in response to fKW, whereas they reduced or stopped foraging to mKW and CTRL+. Moreover, pilot whales joined other subgroups in response to fKW and CTRL+, whereas they tightened individual spacing within group and reduced time at surface in response to mKW. Typical active intimidation behavior displayed to fKW might be an antipredator strategy to a known low-risk ecotype or alternatively a way of securing the habitat exploited by a heterospecific sympatric population. Cessation of feeding and more cohesive approach to mKW playbacks might reflect an antipredator behavior towards an unknown KW ecotype of potentially higher risk. We conclude that pilot whales are able to acoustically discriminate between familiar and unfamiliar KW ecotypes, enabling them to adjust their behavior according to the perceived disturbance type.


Asunto(s)
Percepción Auditiva , Aprendizaje Discriminativo , Ecotipo , Ballena de Aleta , Vocalización Animal , Orca , Calderón , Acústica , Animales , Ballena de Aleta/psicología , Peces , Sonido , Espectrografía del Sonido , Orca/psicología
10.
J Exp Biol ; 220(Pt 22): 4150-4161, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141878

RESUMEN

Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source-whale range (Rmin) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by -3.0 dB (SPLmax), -2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPLmax), -3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship.


Asunto(s)
Acústica , Yubarta/fisiología , Ruido , Navíos , Animales
11.
J Acoust Soc Am ; 141(1): 159, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28147612

RESUMEN

Vocalizations of cetaceans form a key component of their social interactions. Such vocalization activity is driven by the behavioral states of the whales, which are not directly observable, so that latent-state models are natural candidates for modeling empirical data on vocalizations. In this paper, hidden Markov models are used to analyze calling activity of long-finned pilot whales (Globicephala melas) recorded over three years in the Vestfjord basin off Lofoten, Norway. Baseline models are used to motivate the use of three states, while more complex models are fit to study the influence of covariates on the state-switching dynamics. The analysis demonstrates the potential usefulness of hidden Markov models to concisely yet accurately describe the stochastic patterns found in animal communication data, thereby providing a framework for drawing meaningful biological inference.

12.
Environ Monit Assess ; 189(6): 294, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550516

RESUMEN

The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (∼1.9 pixels cm-2, ∼1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.


Asunto(s)
Monitoreo del Ambiente/métodos , Mapeo Geográfico , Fotograbar , Plantas , Altitud , Biomasa , Ecosistema , Ríos , Análisis Espacio-Temporal
14.
Adv Exp Med Biol ; 875: 589-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611008

RESUMEN

In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.


Asunto(s)
Cetáceos/fisiología , Exposición a Riesgos Ambientales , Agua de Mar , Sonido , Animales , Conducta Animal , Noruega
15.
Sensors (Basel) ; 15(10): 25287-312, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26437410

RESUMEN

UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.


Asunto(s)
Altitud , Sistemas de Información Geográfica , Plantas , Tecnología de Sensores Remotos/métodos , Agua , Organismos Acuáticos , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Humanos , Tecnología de Sensores Remotos/instrumentación , Ríos/química , Reino Unido , Agua/análisis
16.
PLoS One ; 19(4): e0302035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669257

RESUMEN

Oceanic delphinids that occur in and around Navy operational areas are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in controlled exposure experiments, we investigated the effects of mid-frequency (3-4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the complexity of acoustic behavior exhibited by these group-living animals, we conducted our response analysis over varying temporal windows (10 min- 5 s) to describe both longer-term and instantaneous changes in sound production. We found that common dolphins exhibited acute and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. This response was sustained throughout sequential MFAS exposures within experiments simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. These results indicate that common dolphins exhibit brief yet clearly detectable acoustic responses to MFAS. They also highlight how variable temporal analysis windows-tuned to key aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure-enable the detection of behavioral responses. We suggest future work with oceanic delphinids explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior to inform the analysis time window over which behavioral responses are measured.


Asunto(s)
Vocalización Animal , Animales , Vocalización Animal/fisiología , Delfín Común/fisiología , Acústica , Sonido
17.
R Soc Open Sci ; 11(7): 240558, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086824

RESUMEN

Social deep-diving odontocetes face the challenge of balancing near-surface proximity to oxygen and group members with foraging in the deep sea. Individuals rely on conspecifics for critical life functions, such as predator defence, but disperse during foraging to feed individually. To understand the role of social acoustic mediation during foraging in deep-diving toothed whales, we investigated the context of social burst-pulse call production in Risso's dolphin (Grampus griseus) using biologgers. Dolphins produced context-specific burst pulses predominantly during daytime foraging, preceding or following foraging dives and in the early descent of daytime deep dives. Individuals applied differential short and long burst-pulse calls intended for either near-surface receivers (horizontal transmission) or deep-foraging receivers (vertical transmission). Our results show that deep-diving toothed whales are reliant on acoustic communication during certain foraging contexts, to relay information including foraging conditions or an individual's location. Moreover, they accentuate the importance of maintaining acoustic contact with conspecifics, specifically when dispersed during deeper foraging. It also signifies that our oceanic top predators may be specifically vulnerable to the current strong increase in anthropogenic noise. Potential masking of the signals from group members communicating at a distance could undermine their social cohesion, and hence their capacity to maintain vital life functions.

18.
Remote Sens Ecol Conserv ; 8(1): 57-71, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35873085

RESUMEN

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.

19.
R Soc Open Sci ; 8(12): 202320, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34966548

RESUMEN

Foraging decisions of deep-diving cetaceans can provide fundamental insight into food web dynamics of the deep pelagic ocean. Cetacean optimal foraging entails a tight balance between oxygen-conserving dive strategies and access to deep-dwelling prey of sufficient energetic reward. Risso's dolphins (Grampus griseus) displayed a thus far unknown dive strategy, which we termed the spin dive. Dives started with intense stroking and right-sided lateral rotation. This remarkable behaviour resulted in a rapid descent. By tracking the fine-scale foraging behaviour of seven tagged individuals, matched with prey layer recordings, we tested the hypothesis that spin dives are foraging dives targeting deep-dwelling prey. Hunting depth traced the diel movement of the deep scattering layer, a dense aggregation of prey, that resides deep during the day and near-surface at night. Individuals shifted their foraging strategy from deep spin dives to shallow non-spin dives around dusk. Spin dives were significantly faster, steeper and deeper than non-spin dives, effectively minimizing transit time to bountiful mesopelagic prey, and were focused on periods when the migratory prey might be easier to catch. Hence, whereas Risso's dolphins were mostly shallow, nocturnal foragers, their spin dives enabled extended and rewarding diurnal foraging on deep-dwelling prey.

20.
Sci Rep ; 10(1): 13, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029750

RESUMEN

Fear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time. Biologging data from 14 Blainville's and 12 Cuvier's beaked whales show that group members have an extreme synchronicity, overlapping vocal foraging time by 98% despite hunting individually, thereby reducing group temporal availability for acoustic detection by killer whales to <25%. Groups also perform a coordinated silent ascent in an unpredictable direction, covering a mean of 1 km horizontal distance from their last vocal position. This tactic sacrifices 35% of foraging time but reduces by an order of magnitude the risk of interception by killer whales. These predator abatement behaviours have likely served beaked whales over millions of years, but may become maladaptive by playing a role in mass strandings induced by man-made predator-like sonar sounds.


Asunto(s)
Buceo/fisiología , Orca , Ballenas/fisiología , Animales , Conducta Animal , Buceo/psicología , Miedo , Femenino , Masculino , Vocalización Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA