Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503282

RESUMEN

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Asunto(s)
Envejecimiento , Encéfalo , Neuronas , Oligodendroglía , Humanos , Envejecimiento/genética , Envejecimiento/patología , Cromatina/genética , Cromatina/metabolismo , Mutación , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de Expresión Génica de una Sola Célula , Secuenciación Completa del Genoma , Encéfalo/metabolismo , Encéfalo/patología , Polimorfismo de Nucleótido Simple , Mutación INDEL , Bancos de Muestras Biológicas , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología
2.
Nature ; 618(7967): 1024-1032, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198482

RESUMEN

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Amplificación de Genes , Oncogenes , Translocación Genética , Femenino , Humanos , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Oncogenes/genética , Translocación Genética/genética , Genoma Humano/genética , Roturas del ADN de Doble Cadena , Especificidad de Órganos
3.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746445

RESUMEN

Improvements in single-cell whole-genome sequencing (scWGS) assays have enabled detailed characterization of somatic copy number alterations (CNAs) at the single-cell level. Yet, current computational methods are mostly designed for detecting chromosome-scale changes in cancer samples with low sequencing coverage. Here, we introduce HiScanner (High-resolution Single-Cell Allelic copy Number callER), which combines read depth, B-allele frequency, and haplotype phasing to identify CNAs with high resolution. In simulated data, HiScanner consistently outperforms state-of-the-art methods across various CNA types and sizes. When applied to high-coverage scWGS data from human brain cells, HiScanner shows a superior ability to detect smaller CNAs, uncovering distinct CNA patterns between neurons and oligodendrocytes. For 179 cells we sequenced from longitudinal meningioma samples, integration of CNAs with point mutations revealed evolutionary trajectories of tumor cells. These findings show that HiScanner enables accurate characterization of frequency, clonality, and distribution of CNAs at the single-cell level in both non-neoplastic and neoplastic cells.

4.
NPJ Precis Oncol ; 8(1): 120, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796637

RESUMEN

A small number of cancer patients respond exceptionally well to therapies and survive significantly longer than patients with similar diagnoses. Profiling the germline genetic backgrounds of exceptional responder (ER) patients, with extreme survival times, can yield insights into the germline polymorphisms that influence response to therapy. As ERs showed a high incidence in autoimmune diseases, we hypothesized the differences in autoimmune disease risk could reflect the immune background of ERs and contribute to better cancer treatment responses. We analyzed the germline variants of 51 ERs using polygenic risk score (PRS) analysis. Compared to typical cancer patients, the ERs had significantly elevated PRSs for several autoimmune-related diseases: type 1 diabetes, hypothyroidism, and psoriasis. This indicates that an increased genetic predisposition towards these autoimmune diseases is more prevalent among the ERs. In contrast, ERs had significantly lower PRSs for developing inflammatory bowel disease. The left-skew of type 1 diabetes score was significant for exceptional responders. Variants on genes involved in the T1D PRS model associated with cancer drug response are more likely to co-occur with other variants among ERs. In conclusion, ERs exhibited different risks for autoimmune diseases compared to typical cancer patients, which suggests that changes in a patient's immune set point or immune surveillance specificity could be a potential mechanistic link to their exceptional response. These findings expand upon previous research on immune checkpoint inhibitor-treated patients to include those who received chemotherapy or radiotherapy.

5.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986891

RESUMEN

The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions. Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17 contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmetrically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.

6.
Nat Commun ; 12(1): 3836, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158502

RESUMEN

Transposable elements (TEs) help shape the structure and function of the human genome. When inserted into some locations, TEs may disrupt gene regulation and cause diseases. Here, we present xTea (x-Transposable element analyzer), a tool for identifying TE insertions in whole-genome sequencing data. Whereas existing methods are mostly designed for short-read data, xTea can be applied to both short-read and long-read data. Our analysis shows that xTea outperforms other short read-based methods for both germline and somatic TE insertion discovery. With long-read data, we created a catalogue of polymorphic insertions with full assembly and annotation of insertional sequences for various types of retroelements, including pseudogenes and endogenous retroviruses. Notably, we find that individual genomes have an average of nine groups of full-length L1s in centromeres, suggesting that centromeres and other highly repetitive regions such as telomeres are a significant yet unexplored source of active L1s. xTea is available at https://github.com/parklab/xTea .


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Humano/genética , Genómica/métodos , Mutagénesis Insercional , Secuenciación Completa del Genoma/métodos , Reordenamiento Génico , Variación Genética , Haplotipos , Humanos , Anotación de Secuencia Molecular/métodos , Seudogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA