RESUMEN
Glutamate is a key player in excitatory neurotransmission in the central nervous system (CNS). The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel which presents several unique features and is involved in various physiological and pathological neuronal processes. Thanks to great efforts in neuroscience, its structure and the molecular mechanisms controlling its localization and functional regulation in neuronal cells are well known. The signaling mediated by NMDAR in neurons is very complex as it depends on its localization, composition, Ca2+ influx, and ion flow-independent conformational changes. Moreover, NMDA receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other membrane receptors and scaffold proteins which determine the receptor function and activation of downstream signaling. Interestingly, a recent paper demonstrates that NMDAR signaling is involved in epithelial cell competition, an evolutionary conserved cell fitness process influencing cancer initiation and progress. The idea that NMDAR signaling is limited to CNS has been challenged in the past two decades. A large body of evidence suggests that NMDAR is expressed in cancer cells outside the CNS and can respond to the autocrine/paracrine release of glutamate. In this review, we survey research on NMDAR signaling and regulation in neurons that can help illuminate its role in tumor biology. Finally, we will discuss existing data on the role of the glutamine/glutamate metabolism, the anticancer action of NMDAR antagonists in experimental models, NMDAR synaptic signaling in tumors, and clinical evidence in human cancer.
Asunto(s)
Neoplasias , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Transmisión Sináptica , Ácido Glutámico/metabolismoRESUMEN
The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and ß chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand-hepatocyte growth factor (HGF)-such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.
Asunto(s)
Factor de Crecimiento de Hepatocito , Semaforinas , Factor de Crecimiento de Hepatocito/metabolismo , Proteína Disulfuro Isomerasas/genética , Ligandos , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Semaforinas/genética , Oncogenes , Disulfuros , Integrinas/genética , Ribonucleasas/genéticaRESUMEN
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a "good" player to be stimulated or a "bad" actor to be mitigated, depending on the pathophysiological context.
Asunto(s)
Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Cardiomegalia/etiología , Humanos , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
The involvement of the N-methyl-D-aspartate receptor (NMDAR), a glutamate-gated ion channel, in promoting the invasive growth of cancer cells is an area of ongoing investigation. Our previous findings revealed a physical interaction between NMDAR and MET, the hepatocyte growth factor (HGF) receptor. However, the molecular mechanisms underlying this NMDAR/MET interaction remain unclear. In this study, we demonstrate that the NMDAR2B subunit undergoes proteolytic processing, resulting in a low-molecular-weight form of 100 kDa. Interestingly, when the NMDAR2B and MET constructs were co-transfected, the full-size high-molecular-weight NMDAR2B form of 160 kDa was predominantly observed. The protection of NMDAR2B from cleavage was dependent on the kinase activity of MET. We provide the following evidence that MET opposes the autophagic lysosomal proteolysis of NMDAR2B: (i) MET decreased the protein levels of lysosomal cathepsins; (ii) treatment with either an inhibitor of autophagosome formation or the fusion of the autophagosome and lysosome elevated the proportion of the NMDAR2B protein's uncleaved form; (iii) a specific mTOR inhibitor hindered the anti-autophagic effect of MET. Finally, we demonstrate that MET coopts NMDAR2B to augment cell migration. This implies that MET harnesses the functionality of NMDAR2B to enhance the ability of cancer cells to migrate.
Asunto(s)
Autofagosomas , Receptores de N-Metil-D-Aspartato , Autofagia , Ácido Glutámico , OncogenesRESUMEN
The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel involved in excitatory synaptic transmission. Outside the nervous system, the NMDAR is expressed in a variety of tissues and in cancers, notably in the highly invasive and metastatic triple-negative breast carcinoma. MET encodes the tyrosine kinase receptor for HGF and is a master regulator gene for "invasive growth". In silico analysis shows that high expression of the NMDAR2B subunit is a negative prognostic factor in human invasive breast carcinoma. Here, we show that in triple-negative breast cancer cell lines NMDAR2B and MET proteins are coexpressed. HGF stimulation of these cells is followed by autophosphorylation of the MET kinase and phosphorylation of the NMDAR2B subunit at tyrosines 1252 and 1474. MET and phosphorylated NMDAR2B are physically associated, as demonstrated by co-immunoprecipitation, confocal immunofluorescence, and proximity ligation assays. Notably, pharmacological inhibition of NMDAR by MK801 and ifenprodil blunts the biological response to HGF. These results demonstrate the existence of a MET-NMDAR crosstalk driving the invasive program, paving the way for a new combinatorial therapy.
RESUMEN
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
RESUMEN
The Hepatocyte growth factor (HGF) and its receptor (MET) promote several physiological activities such as tissue regeneration and protection from cell injury of epithelial, endothelial, neuronal and muscle cells. The therapeutic potential of MET activation has been scrutinized in the treatment of acute tissue injury, chronic inflammation, such as renal fibrosis and multiple sclerosis (MS), cardiovascular and neurodegenerative diseases. On the other hand, the HGF-MET signaling pathway may be caught by cancer cells and turned to work for invasion, metastasis, and drug resistance in the tumor microenvironment. Here, we engineered a recombinant antibody (RDO24) and two derived fragments, binding the extracellular domain (ECD) of the MET protein. The antibody binds with high affinity (8 nM) to MET ECD and does not cross-react with the closely related receptors RON nor with Semaphorin 4D. Deletion mapping studies and computational modeling show that RDO24 binds to the structure bent on the Plexin-Semaphorin-Integrin (PSI) domain, implicating the PSI domain in its binding to MET. The intact RDO24 antibody and the bivalent Fab2, but not the monovalent Fab induce MET auto-phosphorylation, mimicking the mechanism of action of HGF that activates the receptor by dimerization. Accordingly, the bivalent recombinant molecules induce HGF biological responses, such as cell migration and wound healing, behaving as MET agonists of therapeutic interest in regenerative medicine. In vivo administration of RDO24 in the murine model of MS, represented by experimental autoimmune encephalomyelitis (EAE), delays the EAE onset, mitigates the early clinical symptoms, and reduces inflammatory infiltrates. Altogether, these results suggest that engineered RDO24 antibody may be beneficial in multiple sclerosis and possibly other types of inflammatory disorders.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Desarrollo de Medicamentos , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Ingeniería de Proteínas , Proteínas Recombinantes , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Afinidad de Anticuerpos , Antineoplásicos Inmunológicos , Línea Celular , Clonación Molecular , Desarrollo de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Expresión Génica , Vectores Genéticos/genética , Humanos , Ratones , Modelos Moleculares , Mutagénesis , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Resultado del TratamientoRESUMEN
AIMS: Risk stratification in patients with advanced chronic heart failure (HF) is an unmet need. Circulating microRNA (miRNA) levels have been proposed as diagnostic and prognostic biomarkers in several diseases including HF. The aims of the present study were to characterize HF-specific miRNA expression profiles and to identify miRNAs with prognostic value in HF patients. METHODS AND RESULTS: We performed a global miRNome analysis using next-generation sequencing in the plasma of 30 advanced chronic HF patients and of matched healthy controls. A small subset of miRNAs was validated by real-time PCR (P < 0.0008). Pearson's correlation analysis was computed between miRNA expression levels and common HF markers. Multivariate prediction models were exploited to evaluate miRNA profiles' prognostic role. Thirty-two miRNAs were found to be dysregulated between the two groups. Six miRNAs (miR-210-3p, miR-22-5p, miR-22-3p, miR-21-3p, miR-339-3p, and miR-125a-5p) significantly correlated with HF biomarkers, among which N-terminal prohormone of brain natriuretic peptide. Inside the cohort of advanced HF population, we identified three miRNAs (miR-125a-5p, miR-10b-5p, and miR-9-5p) altered in HF patients experiencing the primary endpoint of cardiac death, heart transplantation, or mechanical circulatory support implantation when compared with those without clinical events. The three miRNAs added substantial prognostic power to Barcelona Bio-HF score, a multiparametric and validated risk stratification tool for HF (from area under the curve = 0.72 to area under the curve = 0.82). CONCLUSIONS: This discovery study has characterized, for the first time, the advanced chronic HF-specific miRNA expression pattern. We identified a few miRNAs able to improve the prognostic stratification of HF patients based on common clinical and laboratory values. Further studies are needed to validate our results in larger populations.